URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [ex/] [busdelay.v] - Rev 209
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: busdelay.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: Delay any access to the wishbone bus by a single clock. // // When the first Zip System would not meet the timing requirements of // the board it was placed upon, this bus delay was added to help out. // It may no longer be necessary, having cleaned some other problems up // first, but it will remain here as a means of alleviating timing // problems. // // The specific problem takes place on the stall line: a wishbone master // *must* know on the first clock whether or not the bus will stall. // // // After a period of time, I started a new design where the timing // associated with this original bus clock just wasn't ... fast enough. // I needed to delay the stall line as well. A new busdelay was then // written and debugged whcih delays the stall line. (I know, you aren't // supposed to delay the stall line--but what if you *have* to in order // to meet timing?) This new logic has been merged in with the old, // and the DELAY_STALL line can be set to non-zero to use it instead // of the original logic. Don't use it if you don't need it: it will // consume resources and slow your bus down more, but if you do need // it--don't be afraid to use it. // // Both versions of the bus delay will maintain a single access per // clock when pipelined, they only delay the time between the strobe // going high and the actual command being accomplished. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2019, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // module busdelay(i_clk, i_reset, // The input bus i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, i_wb_sel, o_wb_ack, o_wb_stall, o_wb_data, o_wb_err, // The delayed bus o_dly_cyc, o_dly_stb, o_dly_we, o_dly_addr,o_dly_data,o_dly_sel, i_dly_ack, i_dly_stall, i_dly_data, i_dly_err); parameter AW=32, DW=32; localparam F_LGDEPTH=4; parameter [0:0] DELAY_STALL = 1; input wire i_clk, i_reset; // Input/master bus input wire i_wb_cyc, i_wb_stb, i_wb_we; input wire [(AW-1):0] i_wb_addr; input wire [(DW-1):0] i_wb_data; input wire [(DW/8-1):0] i_wb_sel; output reg o_wb_ack; output wire o_wb_stall; output reg [(DW-1):0] o_wb_data; output reg o_wb_err; // Delayed bus output reg o_dly_cyc, o_dly_stb, o_dly_we; output reg [(AW-1):0] o_dly_addr; output reg [(DW-1):0] o_dly_data; output reg [(DW/8-1):0] o_dly_sel; input wire i_dly_ack; input wire i_dly_stall; input wire [(DW-1):0] i_dly_data; input wire i_dly_err; `ifdef FORMAL wire [2+AW+DW+DW/8-1:0] f_wpending; `endif generate if (DELAY_STALL != 0) begin reg r_stb, r_we; reg [(AW-1):0] r_addr; reg [(DW-1):0] r_data; reg [(DW/8-1):0] r_sel; initial o_dly_cyc = 1'b0; initial o_dly_stb = 1'b0; initial o_dly_we = 1'b0; initial o_dly_addr = 0; initial o_dly_data = 0; initial o_dly_sel = 0; initial r_stb = 1'b0; initial r_we = 1'b0; initial r_addr = 0; initial r_data = 0; initial r_sel = 0; initial o_wb_ack = 1'b0; initial o_wb_err = 1'b0; always @(posedge i_clk) begin o_dly_cyc <= (i_wb_cyc)&&(!i_reset)&&(!o_wb_err) &&((!i_dly_err)||(!o_dly_cyc)); if ((!i_dly_stall)||(!o_dly_stb)) begin r_we <= i_wb_we; r_addr <= i_wb_addr; r_data <= i_wb_data; r_sel <= i_wb_sel; if (r_stb) begin o_dly_we <= r_we; o_dly_addr <= r_addr; o_dly_data <= r_data; o_dly_sel <= r_sel; o_dly_stb <= 1'b1; end else begin o_dly_we <= i_wb_we; o_dly_addr <= i_wb_addr; o_dly_data <= i_wb_data; o_dly_sel <= i_wb_sel; o_dly_stb <= i_wb_stb; end r_stb <= 1'b0; end else if ((!r_stb)&&(!o_wb_stall)) begin r_we <= i_wb_we; r_addr <= i_wb_addr; r_data <= i_wb_data; r_sel <= i_wb_sel; r_stb <= i_wb_stb; end if ((!i_wb_cyc)||((i_dly_err)&&(o_dly_cyc))||(o_wb_err)) begin o_dly_stb <= 1'b0; r_stb <= 1'b0; end if ((i_reset)||(!i_wb_cyc)||(o_wb_err)) o_wb_ack <= 1'b0; else o_wb_ack <= (i_dly_ack)&&(o_dly_cyc)&&(!i_dly_err); o_wb_data <= i_dly_data; if (!i_wb_cyc) o_wb_err <= 1'b0; else o_wb_err <= (i_dly_err)&&(o_dly_cyc); if (i_reset) begin r_stb <= 0; r_we <= 0; o_dly_stb <= 0; o_wb_err <= 0; o_wb_ack <= 0; end end assign o_wb_stall = r_stb; `ifdef FORMAL assign f_wpending = { r_stb, r_we, r_addr, r_data, r_sel }; `endif end else begin initial o_dly_cyc = 1'b0; initial o_dly_stb = 1'b0; initial o_dly_we = 1'b0; initial o_dly_addr = 0; initial o_dly_data = 0; initial o_dly_sel = 0; initial o_wb_ack = 0; initial o_wb_err = 0; always @(posedge i_clk) if (i_reset) o_dly_cyc <= 1'b0; else if ((i_dly_err)&&(o_dly_cyc)) o_dly_cyc <= 1'b0; else if ((o_wb_err)&&(i_wb_cyc)) o_dly_cyc <= 1'b0; else o_dly_cyc <= i_wb_cyc; // Add the i_wb_cyc criteria here, so we can simplify the // o_wb_stall criteria below, which would otherwise *and* // these two. always @(posedge i_clk) if (i_reset) o_dly_stb <= 1'b0; else if ((i_dly_err)&&(o_dly_cyc)) o_dly_stb <= 1'b0; else if ((o_wb_err)&&(i_wb_cyc)) o_dly_stb <= 1'b0; else if (!i_wb_cyc) o_dly_stb <= 1'b0; else if (!o_wb_stall) o_dly_stb <= (i_wb_stb); always @(posedge i_clk) if (!o_wb_stall) o_dly_we <= i_wb_we; always @(posedge i_clk) if (!o_wb_stall) o_dly_addr<= i_wb_addr; always @(posedge i_clk) if (!o_wb_stall) o_dly_data <= i_wb_data; always @(posedge i_clk) if (!o_wb_stall) o_dly_sel <= i_wb_sel; always @(posedge i_clk) if (i_reset) o_wb_ack <= 1'b0; else o_wb_ack <= ((i_dly_ack)&&(!i_dly_err) &&(o_dly_cyc)&&(i_wb_cyc)) &&(!o_wb_err); always @(posedge i_clk) if (i_reset) o_wb_err <= 1'b0; else if (!o_dly_cyc) o_wb_err <= 1'b0; else o_wb_err <= (o_wb_err)||(i_dly_err)&&(i_wb_cyc); always @(posedge i_clk) o_wb_data <= i_dly_data; // Our only non-delayed line, yet still really delayed. Perhaps // there's a way to register this? // o_wb_stall <= (i_wb_cyc)&&(i_wb_stb) ... or some such? // assign o_wb_stall=((i_wb_cyc)&&(i_dly_stall)&&(o_dly_stb));//&&o_cyc assign o_wb_stall = (i_dly_stall)&&(o_dly_stb); `ifdef FORMAL // f_wpending isn't used if DELAY_STALL is zero, but we'll give // it a seemingly useful value anyway--if for no other reason // than to be sure we set it to the right number of bits assign f_wpending = { i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, i_wb_sel }; `endif end endgenerate `ifdef FORMAL `ifdef BUSDELAY `define ASSUME assume `else `define ASSUME assert `endif reg f_past_valid; initial f_past_valid = 1'b0; always @(posedge i_clk) f_past_valid <= 1'b1; initial `ASSUME(i_reset); always @(*) if (!f_past_valid) `ASSUME(i_reset); wire [(F_LGDEPTH-1):0] f_wb_nreqs,f_wb_nacks, f_wb_outstanding, f_dly_nreqs, f_dly_nacks, f_dly_outstanding; localparam ACK_DELAY = 5, STALL_DELAY = 4; fwb_slave #(.AW(AW), .DW(DW), .F_LGDEPTH(F_LGDEPTH), .F_MAX_STALL(STALL_DELAY+1), .F_MAX_ACK_DELAY(ACK_DELAY+1+2*STALL_DELAY), .F_MAX_REQUESTS((1<<F_LGDEPTH)-2), .F_OPT_RMW_BUS_OPTION(1), .F_OPT_DISCONTINUOUS(1)) f_wbs(i_clk, i_reset, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, i_wb_sel, o_wb_ack, o_wb_stall, o_wb_data, o_wb_err, f_wb_nreqs, f_wb_nacks, f_wb_outstanding); fwb_master #(.AW(AW), .DW(DW), .F_LGDEPTH(F_LGDEPTH), .F_MAX_STALL(STALL_DELAY), .F_MAX_ACK_DELAY(ACK_DELAY), .F_MAX_REQUESTS(0), .F_OPT_RMW_BUS_OPTION(1), .F_OPT_DISCONTINUOUS(1)) f_wbm(i_clk, i_reset, o_dly_cyc, o_dly_stb, o_dly_we, o_dly_addr, o_dly_data, o_dly_sel, i_dly_ack, i_dly_stall, i_dly_data, i_dly_err, f_dly_nreqs, f_dly_nacks, f_dly_outstanding); wire [2+AW+DW+DW/8-1:0] f_wb_request, f_dly_request; assign f_wb_request = { i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, i_wb_sel }; assign f_dly_request={ o_dly_stb,o_dly_we,o_dly_addr,o_dly_data,o_dly_sel }; localparam STB_BIT = 2+AW+DW+DW/8-1; reg [2+AW+DW+DW/8-1:0] f_pending; initial f_pending = 0; always @(posedge i_clk) if (!DELAY_STALL) f_pending = 0; else if ((i_reset)||(!i_wb_cyc)||(i_dly_err)) f_pending[STB_BIT] <= 1'b0; else if ((i_wb_stb)&&(!o_wb_stall)) begin f_pending <= f_wb_request; if ((!i_dly_stall)||(!o_dly_stb)) f_pending[STB_BIT] <= 1'b0; end else if ((!i_dly_stall)&&(f_pending[STB_BIT])) f_pending[STB_BIT] <= 1'b0; wire f_wb_busy, f_dly_busy, f_wb_req, f_dly_req; assign f_wb_busy = (i_wb_stb)&&(o_wb_stall); assign f_dly_busy = (o_dly_stb)&&(i_dly_stall); assign f_wb_req = (i_wb_stb)&&(!o_wb_stall); assign f_dly_req = (o_dly_stb)&&(!i_dly_stall); always @(posedge i_clk) if (!DELAY_STALL) begin if ((f_past_valid)&&($past(f_wb_req))&&(!$past(i_reset)) &&(!$past(o_wb_err))&&(!o_wb_err)) assert(($past(f_wb_request) == f_dly_request)); if ((f_past_valid)&&($past(i_reset))) assert(!o_dly_stb); if ((f_past_valid)&&(!$past(i_wb_cyc))) assert(!o_dly_stb); if ((o_dly_stb)&&(i_dly_stall)) assert(o_wb_stall); end else if ((DELAY_STALL)&&(f_past_valid)) begin if ($past(i_reset)) assert(!f_pending[STB_BIT]); if (!$past(f_dly_busy)) assert(!f_pending[STB_BIT]); // if (($past(i_reset))||($past(i_dly_err))) begin assert(!f_pending[STB_BIT]); end else if ($past(f_wb_req)) begin if ($past(f_dly_busy)) assert($past(f_wb_request) == f_pending); end else if ((!$past(i_dly_stall))&&($past(f_pending[STB_BIT])) &&($past(i_wb_cyc))) begin assert(f_dly_request == $past(f_pending)); end end // Constrain the induction solver: whatever's in our f_pending // hold register should be identical to whatever is in the f_wpending // wires above. always @(posedge i_clk) if ((DELAY_STALL)&&(f_past_valid)&&(!$past(i_reset))) begin if (!$past(i_wb_cyc)) assert((!f_pending[STB_BIT]) &&(!f_wpending[STB_BIT])); else if (($past(f_dly_busy))&&($past(f_wb_busy))) assert(f_pending == f_wpending); else if(($past(f_dly_busy))&&($past(f_pending[STB_BIT]))) assert(f_pending == f_wpending); end always @(posedge i_clk) if ((!DELAY_STALL)&&(f_past_valid)&&(!$past(i_reset)) &&($past(i_wb_stb))&&(!$past(o_wb_stall)) &&(!$past(o_wb_err))&&(!o_wb_err)) assert(f_dly_request == $past(f_wb_request)); always @(posedge i_clk) if ((DELAY_STALL)&&(!i_reset)&&(!o_wb_err)) assert(f_pending[STB_BIT] == f_wpending[STB_BIT]); // Upon any request at the input, there should always be a request // on the output at the very next clock always @(posedge i_clk) if ((f_past_valid)&&($past(i_wb_stb))&&(i_wb_cyc)) assert((o_dly_stb)||(o_wb_err)); // Following any dropping of CYC or raising of RESET, STB should // go down as well always @(posedge i_clk) if ((f_past_valid)&&(($past(!i_wb_cyc))||($past(i_reset)))) assert(!o_dly_stb); always @(posedge i_clk) if ((DELAY_STALL)&&(f_past_valid) &&(!$past(i_reset)) &&($past(i_wb_cyc)) &&($past(f_pending[STB_BIT]))) begin if ($past(i_dly_err)) assert(!o_dly_stb); else assert(o_dly_stb); end // Make sure we get no more than one ack per request reg [(F_LGDEPTH-1):0] f_pending_acks; always @(*) if (DELAY_STALL) begin f_pending_acks <= 0; if ((f_past_valid) &&((o_wb_err)||(o_wb_ack)) &&(o_dly_cyc)) f_pending_acks <= 1; end else f_pending_acks <= (((o_wb_ack)||(o_wb_err)) ? 1:0); reg [(F_LGDEPTH-1):0] f_pending_reqs; always @(*) if (DELAY_STALL) begin f_pending_reqs <= ((o_dly_stb) ? 1:0) + ((f_pending[STB_BIT]) ? 1:0); end else begin f_pending_reqs <= (!f_past_valid) ? 0 : ((o_dly_stb) ? 1:0); end reg [(F_LGDEPTH-1):0] f_expected, f_exp_nreqs, f_exp_nacks; always @(*) f_expected <= f_dly_outstanding + f_pending_reqs+f_pending_acks; always @(*) f_exp_nreqs<= f_dly_nreqs + f_pending_reqs; always @(*) f_exp_nacks<= f_dly_nacks - f_pending_acks; always @(*) if (i_wb_cyc) assert(f_dly_outstanding <= f_wb_outstanding); always @(posedge i_clk) if ((!i_reset)&&(i_wb_cyc)&&(o_dly_cyc)&&(!i_dly_err)) assert(f_expected == f_wb_outstanding); always @(posedge i_clk) if ((i_wb_cyc)&&(o_dly_cyc)&&(!i_reset)&&(!i_dly_err)) begin assert(f_exp_nreqs == f_wb_nreqs); assert(f_exp_nacks == f_wb_nacks); end `endif endmodule