URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [peripherals/] [icontrol.v] - Rev 5
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: icontrol.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: An interrupt controller, for managing many interrupt sources. // // This interrupt controller started from the question of how best to // design a simple interrupt controller. As such, it has a few nice // qualities to it: // 1. This is wishbone compliant // 2. It sits on a 32-bit wishbone data bus // 3. It only consumes one address on that wishbone bus. // 4. There is no extra delays associated with reading this // device. // 5. Common operations can all be done in one clock. // // So, how shall this be used? First, the 32-bit word is broken down as // follows: // // Bit 31 - This is the global interrupt enable bit. If set, interrupts // will be generated and passed on as they come in. // Bits 16-30 - These are specific interrupt enable lines. If set, // interrupts from source (bit#-16) will be enabled. // To set this line and enable interrupts from this source, write // to the register with this bit set and the global enable set. // To disable this line, write to this register with global enable // bit not set, but this bit set. (Writing a zero to any of these // bits has no effect, either setting or unsetting them.) // Bit 15 - This is the any interrupt pin. If any interrupt is pending, // this bit will be set. // Bits 0-14 - These are interrupt bits. When set, an interrupt is // pending from the corresponding source--regardless of whether // it was enabled. (If not enabled, it won't generate an // interrupt, but it will still register here.) To clear any // of these bits, write a '1' to the corresponding bit. Writing // a zero to any of these bits has no effect. // // The peripheral also sports a parameter, IUSED, which can be set // to any value between 1 and (buswidth/2-1, or) 15 inclusive. This will // be the number of interrupts handled by this routine. (Without the // parameter, Vivado was complaining about unused bits. With it, we can // keep the complaints down and still use the routine). // // To get access to more than 15 interrupts, chain these together, so // that one interrupt controller device feeds another. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Tecnology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // module icontrol(i_clk, i_reset, i_wr, i_proc_bus, o_proc_bus, i_brd_ints, o_interrupt_strobe); parameter IUSED = 15; input i_clk, i_reset; input i_wr; input [31:0] i_proc_bus; output wire [31:0] o_proc_bus; input [(IUSED-1):0] i_brd_ints; output reg o_interrupt_strobe; reg [(IUSED-1):0] r_int_state; reg [(IUSED-1):0] r_int_enable; wire [(IUSED-1):0] nxt_int_state; reg r_any, r_interrupt, r_gie; assign nxt_int_state = (r_int_state|i_brd_ints); initial r_int_state = 0; always @(posedge i_clk) if (i_reset) r_int_state <= 0; else if (i_wr) r_int_state <= nxt_int_state & (~i_proc_bus[(IUSED-1):0]); else r_int_state <= nxt_int_state; initial r_int_enable = 0; always @(posedge i_clk) if (i_reset) r_int_enable <= 0; else if ((i_wr)&&(i_proc_bus[31])) r_int_enable <= r_int_enable | i_proc_bus[(16+IUSED-1):16]; else if ((i_wr)&&(~i_proc_bus[31])) r_int_enable <= r_int_enable & (~ i_proc_bus[(16+IUSED-1):16]); initial r_gie = 1'b0; always @(posedge i_clk) if (i_reset) r_gie <= 1'b0; else if (i_wr) r_gie <= i_proc_bus[31]; initial r_any = 1'b0; always @(posedge i_clk) r_any <= ((r_int_state & r_int_enable) != 0); initial r_interrupt = 1'b0; always @(posedge i_clk) r_interrupt <= r_gie & r_any; generate if (IUSED < 15) begin assign o_proc_bus = { r_gie, { {(15-IUSED){1'b0}}, r_int_enable }, r_any, { {(15-IUSED){1'b0}}, r_int_state } }; end else begin assign o_proc_bus = { r_gie, r_int_enable, r_any, r_int_state }; end endgenerate reg int_condition; initial int_condition = 1'b0; initial o_interrupt_strobe = 1'b0; always @(posedge i_clk) if (i_reset) begin int_condition <= 1'b0; o_interrupt_strobe <= 1'b0; end else if (~r_interrupt) // This might end up generating begin // many, many, (wild many) interrupts int_condition <= 1'b0; o_interrupt_strobe <= 1'b0; end else if ((~int_condition)&&(r_interrupt)) begin int_condition <= 1'b1; o_interrupt_strobe <= 1'b1; end else o_interrupt_strobe <= 1'b0; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log