URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [trunk/] [addressgenerator.sv] - Rev 2
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
// Engineer: Agner Fog
//
// Create Date: 2020-06-04
// Last modified: 2021-07-17
// Module Name: decoder
// Project Name: ForwardCom soft core
// Target Devices: Artix 7
// Tool Versions: Vivado v. 2020.1
// License: CERN-OHL-W v. 2 or later
// Description: Address generator. Calculates address of memory operand
//
//////////////////////////////////////////////////////////////////////////////////
`include "defines.vh"
module addressgenerator(
input clock, // system clock (100 MHz)
input clock_enable, // clock enable. Used when single-stepping
input reset, // system reset.
input valid_in, // data from fetch module ready
input stall_in, // a later stage in pipeline is stalled
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
input [95:0] instruction_in, // current instruction, up to 3 words long
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
input vector_in, // this is a vector instruction
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
input [2:0] rs_status_in, // 1: RS is register operand, 2: RS is pointer, 3: RS is index, 4: RS is vector length
input [2:0] rt_status_in, // 1: RT is register operand, 2: RT is pointer
input [1:0] ru_status_in, // 1: RU is used as register operand
input [1:0] rd_status_in, // 1: RD is used as input
input [1:0] mask_status_in, // 1: mask register used
input mask_alternative_in, // mask register and fallback register used for alternative purposes
input [2:0] fallback_use_in, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
input [1:0] num_operands_in, // number of source operands
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
input [1:0] offset_field_in, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
input [1:0] scale_factor_in, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
input index_limit_in, // IM2 or IM3 contains a limit to the index
// Register values
input [`RB:0] rd_val_in, // value of register operand RD, bit `RB indicates missing
input [`RB:0] rs_val_in, // value of register operand RS, bit `RB indicates missing
input [`RB:0] rt_val_in, // value of register operand RT, bit `RB indicates missing
input [`RB:0] ru_val_in, // value of register operand RU, bit `RB indicates missing
input [`MASKSZ:0] regmask_val_in, // value of mask register, bit 32 indicates missing
// monitor result buses:
input write_en1, // a result is written to writeport1
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
input [`RB1:0] writeport1_in, // result bus 1
input write_en2, // a result is written to writeport2
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
input [`RB1:0] writeport2_in, // result bus 2
input [`TAG_WIDTH-1:0] predict_tag1_in, // tag on result bus 1 in next clock cycle
input [`TAG_WIDTH-1:0] predict_tag2_in, // tag on result bus 2 in next clock cycle
// calculated read and write memory addresses go to data cache
output reg [`COMMON_ADDR_WIDTH-1:0] read_write_address_out, // address of memory operand
output reg read_enable_out, // read from data cache
output reg [1:0] read_data_size_out, // 8, 16, 32, or 64 bits read
output reg [7:0] write_enable_out, // write enable for each byte separately
output reg [63:0] write_data_out, // data to write
// instruction output to next pipeline stage
output reg valid_out, // An instruction is ready for output to next stage
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction
output reg [63:0] instruction_out, // first word of instruction
output reg stall_predict_out, // will be waiting for an operand
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
output reg [`RB:0] operand1_out, // value of first operand, bit `RB indicates invalid
output reg [`RB:0] operand2_out, // value of second operand, bit `RB indicates invalid
output reg [`RB:0] operand3_out, // value of last, bit `RB indicates valid
output reg [`MASKSZ:0] regmask_val_out,// value of mask register, high bit indicates valid
output reg vector_out, // this is a vector instruction
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
output reg mask_status_out, // 1: mask register used
output reg mask_alternative_out, // mask register and fallback register used for alternative purposes
output reg [2:0] fallback_use_out, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
output reg [1:0] num_operands_out, // number of source operands
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
output reg [1:0] offset_field_out, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
output reg [1:0] immediate_field_out, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
output reg [1:0] scale_factor_out, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
output reg memory_operand_out, // The instruction has a memory operand
output reg array_error_out, // Array index exceeds limit
output reg options3_out, // IM3 containts option bits
output reg [31:0] debug1_out, // Temporary output for debugging purpose
output reg [31:0] debug2_out, // Temporary output for debugging purpose
output reg [31:0] debug3_out // Temporary output for debugging purpose
);
// instruction components
logic [1:0] il; // instruction length
logic [2:0] mode; // instruction mode
logic M; // M bit
logic [5:0] op1; // OP1 in instruction
logic [1:0] op2; // OP2 in instruction
logic [2:0] otype; // operand type
logic [2:0] mode2; // mode2 in format E
logic option_bits_im3; // IM3 is used for option bits
// synchronization signals
logic waiting; // waiting for needed register value
logic wait_next1; // predict that it will also be waiting for reg1 in the next clock cycle
logic wait_next2; // predict that it will also be waiting for reg2 in the next clock cycle
logic wait_next3; // predict that it will also be waiting for reg3 in the next clock cycle
logic address_instruction; // this is an address instruction. no memory access
logic mask_off; // result is masked off
logic new_instruction; // instruction is different from last instruction
logic array_error; // Array index exceeds limit
reg last_stall; // was stalled in last clock cycle. May obtain values from the temporary registers
reg last_valid; // input was valid in last clock cycle
reg [`TAG_WIDTH-1:0] last_tag_val; // check if instruction tag has changed
// components of address calculation
logic [`COMMON_ADDR_WIDTH-1:0] base_pointer;
logic [`COMMON_ADDR_WIDTH-1:0] address_index;
logic [`COMMON_ADDR_WIDTH-1:0] address_offset; // offset of memory operand
logic [`COMMON_ADDR_WIDTH-1:0] address; // address of memory operand
logic [`RB1:0] write_data; // data to write
// register values. Extra bit is 1 if not found
logic [`RB:0] rs_val; // value of first register operand RS, bit `RB indicates missing
logic [`RB:0] rt_val; // value of second register operand RT, bit `RB indicates missing
logic [`RB:0] ru_val; // value of third register operand RD or RU, bit `RB indicates missing
logic [`RB:0] rd_val; // value of third register operand RD or RU, bit `RB indicates missing
logic [`MASKSZ:0] regmask_val; // value of mask register, bit 32 indicates missing
// temporary storage of register values if found during stall. High bit is zero if valid
reg [`RB:0] rs_val_temp; // value of first register operand RS, bit `RB indicates missing
reg [`RB:0] rt_val_temp; // value of second register operand RT, bit `RB indicates missing
reg [`RB:0] ru_val_temp; // value of third register operand RD or RU, bit `RB indicates missing
reg [`RB:0] rd_val_temp; // value of third register operand RD or RU, bit `RB indicates missing
reg [`MASKSZ:0] regmask_val_temp; // value of mask register, bit 32 indicates missing
always_comb begin
// components of format template
il = instruction_in[`IL]; // instruction length
mode = instruction_in[`MODE]; // format mode
M = instruction_in[`M]; // extension to operand type or mode
op1 = instruction_in[`OP1]; // operation code
op2 = instruction_in[`OP2]; // operation code extension
otype = instruction_in[`OT] & {vector_in,2'b11}; // operand type
mode2 = instruction_in[`MODE2]; // format mode extension
// look for address instruction
if (il == 2 && mode == 1 && M && op1 == `II_ADDRESS_29) address_instruction = 1;
else address_instruction = 0;
// detect use of IM3 as option bits or extra operand
option_bits_im3 = 0;
if (il == 2 && (mode == 0 || mode == 5) && mode2 == 5) begin
option_bits_im3 = 0; // format 2.0.5 and 2.2.5 are using IM3 for an operand, not for options
end else if (category_in == `CAT_MULTI) begin
if (op1 == `II_SIGN_EXTEND_ADD || op1 == `II_COMPARE
|| op1 == `II_DIV || op1 == `II_DIV_REV || op1 == `II_DIV_U
|| op1 == `II_TEST_BIT || op1 == `II_TEST_BITS_AND || op1 == `II_TEST_BITS_OR
|| op1 == `II_MUL_ADD_FLOAT16 || op1 == `II_MUL_ADD || op1 == `II_MUL_ADD2
|| op1 == `II_ADD_ADD) begin
option_bits_im3 = 1;
end
end else if (il == 2) begin
if (((mode == 0 && !M) || mode == 2) && mode2 == 7 && op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS)
option_bits_im3 = 1;
if (mode == 2 && mode2 == 7 && op1 == `II_MASK_LENGTH && op2 == `II2_MASK_LENGTH)
option_bits_im3 = 1;
if (((mode == 0 && !M) || mode == 2) && mode2 == 6 && op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3)
option_bits_im3 = 1;
end
/* We need to prevent spill-over of values from a preceding stalled instruction
because the address generator can produce pipeline bubbles. The solution used
here is to check if the instruction tag has changed before using the _temp values.
Test case:
int64 sp -= 32
int r8 = 8
int r9 = 9
int32 [sp+0x00] = r8
int32 [sp+0x08] = r9
int32 r2 = r8 + r9
int32 [sp+0x10] = r2
*/
// check if current instruction is different from last clock cycle
new_instruction = (tag_val_in != last_tag_val) && valid_in;
// look at result buses for any missing register values
if (last_stall && rs_val_temp[`RB] == 0 && last_valid && !new_instruction) rs_val = rs_val_temp; // obtained during stall
else if (rs_val_in[`RB] == 1 && write_en1 && rs_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rs_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (rs_val_in[`RB] == 1 && write_en2 && rs_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rs_val = {1'b0, writeport2_in}; // obtained from result bus 2
else rs_val = rs_val_in;
if (last_stall && rt_val_temp[`RB] == 0 && last_valid && !new_instruction) rt_val = rt_val_temp; // obtained during stall
else if (rt_val_in[`RB] == 1 && write_en1 && rt_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rt_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (rt_val_in[`RB] == 1 && write_en2 && rt_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rt_val = {1'b0, writeport2_in}; // obtained from result bus 2
else rt_val = rt_val_in;
if (last_stall && ru_val_temp[`RB] == 0 && last_valid && !new_instruction) ru_val = ru_val_temp; // obtained during stall
else if (ru_val_in[`RB] == 1 && write_en1 && ru_val_in[`TAG_WIDTH-1:0] == write_tag1_in) ru_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (ru_val_in[`RB] == 1 && write_en2 && ru_val_in[`TAG_WIDTH-1:0] == write_tag2_in) ru_val = {1'b0, writeport2_in}; // obtained from result bus 2
else ru_val = ru_val_in;
if (last_stall && rd_val_temp[`RB] == 0 && last_valid && !new_instruction) rd_val = rd_val_temp; // obtained during stall
else if (rd_val_in[`RB] == 1 && write_en1 && rd_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rd_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (rd_val_in[`RB] == 1 && write_en2 && rd_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rd_val = {1'b0, writeport2_in}; // obtained from result bus 2
else rd_val = rd_val_in;
if (mask_status_in == `REG_UNUSED) regmask_val = 1; // no mask
else if (last_stall && regmask_val_temp[`MASKSZ] == 0 && last_valid && !new_instruction) regmask_val = regmask_val_temp; // obtained during stall
else if (regmask_val_in[`MASKSZ] == 1 && write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) regmask_val = {1'b0, writeport1_in[`MASKSZ-1:0]}; // obtained from result bus 1
else if (regmask_val_in[`MASKSZ] == 1 && write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) regmask_val = {1'b0, writeport2_in[`MASKSZ-1:0]}; // obtained from result bus 2
else regmask_val = regmask_val_in;
end
// save values from result bus during stall
always_ff @(posedge clock) if (clock_enable) begin
if ((stall_in || waiting) && valid_in ) begin
rs_val_temp <= rs_val; // temporary save during stall
rt_val_temp <= rt_val; // temporary save during stall
ru_val_temp <= ru_val; // temporary save during stall
rd_val_temp <= rd_val; // temporary save during stall
regmask_val_temp <= regmask_val; // temporary save during stall
end else begin
rs_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
rt_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
ru_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
rd_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
regmask_val_temp <= {1'b1,`MASKSZ'b0}; // reset when not stalled
end
end
always_comb begin
// Check if result is masked off so that we don't have to wait for operands
mask_off = mask_status_in != `REG_UNUSED && !mask_alternative_in && !vector_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0;
waiting = 0;
wait_next1 = 0; wait_next2 = 0; wait_next3 = 0;
array_error = 0;
// check if we need to wait for register values
if (rs_val[`RB] && rs_status_in == `REG_POINTER && !mask_off) begin
waiting = 1; // value of RS needed in this stage for address calculation. must stall
// predict if value will arrive in next clock cycle
wait_next1 = predict_tag1_in != rs_val[`TAG_WIDTH-1:0] && predict_tag2_in != rs_val[`TAG_WIDTH-1:0];
end
if (rt_val[`RB] && rt_status_in >= `REG_INDEX && !mask_off) begin
waiting = 1; // value of RT needed in this stage for address calculation. must stall
// predict if value will arrive in next clock cycle
wait_next2 = predict_tag1_in != rt_val[`TAG_WIDTH-1:0] && predict_tag2_in != rt_val[`TAG_WIDTH-1:0];
end
if (rd_val[`RB] && rd_status_in != 0 && result_type_in == `RESULT_MEM && !mask_off) begin
waiting = 1; // value of RD needed in this stage for writing. must stall
// predict if value will arrive in next clock cycle
wait_next3 = predict_tag1_in != rd_val[`TAG_WIDTH-1:0] && predict_tag2_in != rd_val[`TAG_WIDTH-1:0];
end
if (regmask_val[`MASKSZ] && mask_status_in != `REG_UNUSED && result_type_in == `RESULT_MEM) begin
waiting = 1; // value of mask needed before write
// predict if value will arrive in next clock cycle
wait_next3 = predict_tag1_in != regmask_val[`TAG_WIDTH-1:0] && predict_tag2_in != regmask_val[`TAG_WIDTH-1:0];
end
////////////////////////////////////////////////
// calculate address: //
////////////////////////////////////////////////
// rs is base pointer
base_pointer = rs_val[`RB1:0];
if (rt_status_in == `REG_INDEX) begin
// rt is scaled index
if (scale_factor_in == `SCALE_OS) begin
case (otype) // operand type
`OT_INT8: address_index = rt_val[`RB-1:0]; // scale factor 1
`OT_INT16: address_index = {rt_val[`RB-2:0],1'b0}; // scale factor 2
`OT_INT32, `OT_FLOAT32: address_index = {rt_val[`RB-3:0],2'b0}; // scale factor 4
`OT_INT64, `OT_FLOAT64: address_index = {rt_val[`RB-4:0],3'b0}; // scale factor 8
`OT_INT128,`OT_FLOAT128: address_index = {rt_val[`RB-5:0],4'b0}; // scale factor 16
endcase
end else if (scale_factor_in == `SCALE_MINUS) begin
address_index = -rt_val[`RB1:0]; // scale factor -1
end else begin
address_index = rt_val[`RB1:0]; // no scale factor
end
if (index_limit_in) begin
// check index limit
if (il == 3 && rt_val[`RB1:0] > instruction_in[95:64]
|| il == 2 && rt_val[`RB1:0] > instruction_in[`IM2E]) array_error = 1;
end
end else begin
address_index = 0; // no index
end
if (offset_field_in == `OFFSET_NONE) begin // no offset
address_offset = 0;
end else if (offset_field_in == `OFFSET_1) begin // 8 bit offset in IM1, scaled by operand size
case (otype) // operand type
`OT_INT8: address_offset = {{56{instruction_in[7]}},instruction_in[`IM1]}; // sign extend IM1
`OT_INT16: address_offset = {{55{instruction_in[7]}},instruction_in[`IM1],1'b0}; // sign extend, scale by 2
`OT_INT32, `OT_FLOAT32: address_offset = {{54{instruction_in[7]}},instruction_in[`IM1],2'b0}; // sign extend, scale by 4
`OT_INT64, `OT_FLOAT64: address_offset = {{53{instruction_in[7]}},instruction_in[`IM1],3'b0}; // sign extend, scale by 8
`OT_INT128,`OT_FLOAT128: address_offset = {{52{instruction_in[7]}},instruction_in[`IM1],4'b0}; // sign extend, scale by 16
endcase
end else if(offset_field_in == `OFFSET_2) begin // 16 bit offset in IM2, not scaled
address_offset = {{48{instruction_in[47]}},instruction_in[`IM2E]}; // sign extend IM2;
end else if (il == 2) begin // 32 bit offset in IM2
address_offset = {{32{instruction_in[63]}},instruction_in[63:32]}; // sign extend IM2;
end else if (mode == 1 && op1 == 0) begin // format 3.1.0. Jump with memory offest in IM3
address_offset = {{32{instruction_in[95]}},instruction_in[95:64]}; // sign extend IM3;
end else begin // format 3.x.x, except 3.1.0
address_offset = {{32{instruction_in[95]}},instruction_in[95:64]}; // sign extend IM4;
end
// calculated address
address = base_pointer + address_index + address_offset;
// data to write. (mask is handled below)
if (category_in == `CAT_MULTI) begin
write_data <= rd_val; // write register
end else begin
write_data <= instruction_in[63:32]; // write constant
end
end
always_ff @(posedge clock) if (clock_enable) begin
read_enable_out <= 0;
write_enable_out <= 0;
if (valid_in && !waiting) begin
// output memory address for data cache read and write
// must have natural alignment
read_write_address_out <= address;
if (result_type_in == `RESULT_MEM && !mask_off && !array_error) begin
// memory write
if (otype == `OT_INT8) begin // write 8 bits
case (address[2:0])
0: begin
write_data_out <= write_data;
write_enable_out <= 8'b00000001; end
1: begin
write_data_out <= {write_data[7:0],8'b0};
write_enable_out <= 8'b00000010; end
2: begin
write_data_out <= {write_data[7:0],16'b0};
write_enable_out <= 8'b00000100; end
3: begin
write_data_out <= {write_data[7:0],24'b0};
write_enable_out <= 8'b00001000; end
4: begin
write_data_out <= {write_data[7:0],32'b0};
write_enable_out <= 8'b00010000; end
5: begin
write_data_out <= {write_data[7:0],40'b0};
write_enable_out <= 8'b00100000; end
6: begin
write_data_out <= {write_data[7:0],48'b0};
write_enable_out <= 8'b01000000; end
7: begin
write_data_out <= {write_data[7:0],56'b0};
write_enable_out <= 8'b10000000; end
endcase
end else if (otype == `OT_INT16) begin // write 16 bits
case (address[2:1])
0: begin
write_data_out <= write_data;
write_enable_out <= 8'b00000011; end
1: begin
write_data_out <= {write_data[15:0],16'b0};
write_enable_out <= 8'b00001100; end
2: begin
write_data_out <= {write_data[15:0],32'b0};
write_enable_out <= 8'b00110000; end
3: begin
write_data_out <= {write_data[15:0],48'b0};
write_enable_out <= 8'b11000000; end
endcase
end else if (otype == `OT_INT32 || otype == `OT_FLOAT32) begin // write 32 bits
case (address[2])
0: begin
write_data_out <= write_data;
write_enable_out <= 8'b00001111; end
1: begin
write_data_out <= {write_data[31:0],32'b0};
write_enable_out <= 8'b11110000; end
endcase
end else begin // write 64 bits (or more)
write_data_out <= write_data;
write_enable_out <= 8'b11111111;
end
end else if (rs_status_in == `REG_POINTER && !address_instruction) begin
// memory read. Must have natural alignment
read_enable_out <= valid_in && !mask_off && !array_error;
write_enable_out <= 0;
case (otype)
`OT_INT8: read_data_size_out <= `OT_INT8;
`OT_INT16: read_data_size_out <= `OT_INT16;
`OT_INT32,
`OT_FLOAT32: read_data_size_out <= `OT_INT32;
default: read_data_size_out <= `OT_INT64;
endcase
end
// sort operand values, selected by the priority order: immediate, memory, rt, rs, ru, rd
operand1_out <= 0; // value of first operand, bit `RB indicates invalid
operand2_out <= 0; // value of second operand, bit `RB indicates invalid
operand3_out <= 0; // value of last operand, bit `RB indicates invalid
if (immediate_field_in != `IMMED_NONE && rs_status_in == `REG_POINTER) begin
// both memory and immediate operands.
// Last operand is an immediate value calculated below.
// Next to last operand is a memory operand retrieved later.
// Find remaining register operand
if (rt_status_in == `REG_OPERAND) operand1_out <= rt_val;
else if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
end else if (immediate_field_in != `IMMED_NONE || rs_status_in == `REG_POINTER) begin
// Last operand is an immediate value calculated below or a memory operand retrieved later.
// Find remaining register operands
if (rt_status_in == `REG_OPERAND) begin
operand2_out <= rt_val;
if (rs_status_in == `REG_OPERAND) operand1_out <= rs_val;
else if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
else operand1_out <= rt_val; // possible fallback
end else if (rs_status_in == `REG_OPERAND || rs_status_in == `REG_SYSTEM) begin
operand2_out <= rs_val;
if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
else operand1_out <= rs_val; // possible fallback_use_in == `FALLBACK_RS
end else if (ru_status_in == `REG_OPERAND) begin
operand2_out <= ru_val;
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
else operand1_out <= ru_val;
end else if (rd_status_in == `REG_OPERAND) begin
operand2_out <= rd_val;
operand1_out <= rd_val;
end
end else begin
// last operand is a register
if (rt_status_in == `REG_OPERAND) begin
operand3_out <= rt_val;
if (rs_status_in == `REG_OPERAND) begin
operand2_out <= rs_val;
if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
else operand1_out <= rs_val;
end else if (ru_status_in == `REG_OPERAND) begin
operand2_out <= ru_val;
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
else operand1_out <= ru_val;
end else if (rd_status_in == `REG_OPERAND) begin
operand2_out <= rd_val;
operand1_out <= rd_val;
end
end else if (rs_status_in == `REG_OPERAND) begin
operand3_out <= rs_val;
if (ru_status_in == `REG_OPERAND) begin
operand2_out <= ru_val;
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
else operand1_out <= ru_val;
end else if (rd_status_in == `REG_OPERAND) begin
operand2_out <= rd_val;
operand1_out <= rd_val;
end
end else if (ru_status_in == `REG_OPERAND) begin // should not occur
operand3_out <= ru_val;
if (rd_status_in == `REG_OPERAND) begin
operand2_out <= rd_val;
operand1_out <= rd_val;
end else begin
operand1_out <= ru_val;
end
end else if (rd_status_in == `REG_OPERAND) begin
operand3_out <= rd_val;
operand1_out <= rd_val;
end
end
// look for immediate operand, and process it if necessary
if (immediate_field_in != `IMMED_NONE) begin
if (immediate_field_in == `IMMED_1) begin // sign_extend 8 bit immediate operand
if (format_in == `FORMAT_E) begin
operand3_out <= {{(`RB-8){instruction_in[`IM3EXS]}},instruction_in[`IM3EX]};
end else if (format_in == `FORMAT_C && category_in == `CAT_JUMP) begin
// jump in format 1.7C and 2.5.4C
operand3_out <= {{(`RB-8){instruction_in[15]}},instruction_in[15:8]};
end else begin // format B
operand3_out <= {{(`RB-8){instruction_in[`IM1S]}},instruction_in[`IM1]};
end
end
if (immediate_field_in == `IMMED_2) begin // sign_extend 16 bit immediate operand
if (format_in == `FORMAT_C) begin // format C: sign extend (IM2,IM1)
operand3_out <= {{(`RB-16){instruction_in[15]}},instruction_in[15:0]};
// special cases
if (mode == 1) begin
if (op1 == `II_MOVEU11) operand3_out <= instruction_in[15:0]; // zero extended
if (op1 == `II_ADDSHIFT16_11) begin
`ifdef SUPPORT_64BIT
operand3_out <= {{(`RB-32){instruction_in[15]}},instruction_in[15:0],16'b0}; // shift left by 16
`else
operand3_out <= {instruction_in[15:0],16'b0}; // shift left by 16
`endif
end
if ((op1 & -2) == `II_SHIFT_MOVE_11 || op1 >= `II_SHIFT_ADD_11 && op1 <= `II_SHIFT_XOR_11+1) begin // IM2 << IM1
if (instruction_in[`IM1] >= 64) operand3_out <= 0;
else operand3_out <= {{(`RB-8){instruction_in[15]}},instruction_in[15:8]} << instruction_in[5:0];
end
end
end else begin
operand3_out <= {{(`RB-16){instruction_in[`IM2ES]}},instruction_in[`IM2E]};
// special cases
if (il == 2 && ((mode == 0 && !M) || mode == 2) && mode2 == 7 && !option_bits_im3) begin
// format 2.0.7 and 2.2.7 have shift
operand3_out <= {{(`RB-16){instruction_in[47]}},instruction_in[`IM2E]} << instruction_in[`IM3E];
end
end
end
if (immediate_field_in == `IMMED_3) begin
`ifdef SUPPORT_64BIT
if (il == 3 && ((mode == 0 && !M) || mode == 2) && mode2 == 7 && otype < `OT_FLOAT32) begin
// format 3.0.7 and 3.2.7 have shift
operand3_out <= {{32{instruction_in[95]}},instruction_in[95:64]} << instruction_in[`IM2E];
end else if (il == 3 && format_in == `FORMAT_E) begin
// other format 3E
operand3_out <= {{32{instruction_in[95]}},instruction_in[95:64]};
end else if (il == 3 && mode == 0 && M) begin
// format 3.8
operand3_out <= instruction_in[95:32];
end else begin
// format 2.x
operand3_out <= {{32{instruction_in[63]}},instruction_in[63:32]};
end
`else
if (((mode == 0 && !M) || mode == 2) && mode2 == 7 && otype < `OT_FLOAT32) begin
// format 3.0.7 and 3.2.7 have shift
operand3_out <= instruction_in[95:64] << instruction_in[`IM2E];
end else if (il == 3 && format_in == `FORMAT_E) begin
operand3_out <= instruction_in[95:64];
end else begin
operand3_out <= instruction_in[63:32];
end
`endif
// special cases
if (il == 2 && mode == 1 && M) begin
if (op1 == `II_ADDU_29 || op1 == `II_SUBU_29) begin
operand3_out <= instruction_in[63:32]; // zero extend
end
if (op1 == `II_MOVE_HI_29 || (op1 >= `II_ADD_HI_29 && op1 <= `II_XOR_HI_29)) begin
// immediate constant is high word of 64 bits
`ifdef SUPPORT_64BIT
operand3_out <= {instruction_in[63:32],32'b0}; // high word
`else
operand3_out <= 0; // there is no high word
`endif
end
end
end
//if (category_in == `CAT_JUMP) begin // unnecessary check
if (il == 2 && mode == 5) begin
// immediate operands in jump instructions 2.5.x
if (op1 == 0) begin
// format 2.5.0A: jump with three registers, and 24 bit jump offset, no immediate
end else if (op1 == 1) begin
// format 2.5.1B: jump with one register, one 16 bit operand, and 16 bit jum offset
operand3_out <= {{48{instruction_in[47]}},instruction_in[47:32]}; // sign extend 16 bit operand
end else if (op1 == 4) begin
// format 2.5.4C: jump with one register, one 8 bit operand, and 32 bit offset
operand3_out <= {{56{instruction_in[15]}},instruction_in[15:8]}; // sign extend 8 bit operand
end else if (op1 == 5) begin
// format 2.5.5: jump with one register, one 32 bit operand, and 8 bit offset
operand3_out <= {{32{instruction_in[63]}},instruction_in[63:32]}; // sign extend 32 bit operand
end else if (op1 == 7) begin
// format 2.5.7: system call. 16 bit and 32 bit constants
operand3_out <= {instruction_in[63:32],16'b0,instruction_in[15:0]}; // 32 bit module ID, 16 bit function ID
end
end
if (il == 3 && mode == 1) begin
// immedate operands in jump instructions 3.1.x
if (op1 == 0) begin
// format 3.1.0: jump with memory operand and 32 bit offset. no immediate
end else if (op1 == 1) begin // && op1 == `IJ_SYSCALL
// jump format 3.1.1
if (instruction_in[5:0] < `IJ_SYSCALL) begin
operand3_out <= instruction_in[95:64];
end else begin
// format 3.1.1: system call with 32 bit module ID and 32 bit function ID
`ifdef SUPPORT_64BIT
operand3_out <= instruction_in[95:32];
`else
operand3_out <= {instruction_in[79:64],instruction_in[47:32]};
`endif
end
end
end
operand3_out[`RB] <= 0; // indicate not missing
end
if (address_instruction) begin
operand3_out <= address; // address instruction
end
if (fallback_use_in > `FALLBACK_SOURCE) begin
// separate fallback register. Check if fallback zero
if (fallback_use_in == `FALLBACK_RU && instruction_in[`RU] == 31) operand1_out <= 0;
if (fallback_use_in == `FALLBACK_RS && instruction_in[`RS] == 31) operand1_out <= 0;
if (fallback_use_in == `FALLBACK_RT && instruction_in[`RT] == 31) operand1_out <= 0;
end
// output everything else
regmask_val_out <= regmask_val;
instruction_pointer_out <= instruction_pointer_in; // address of current instruction
instruction_out <= instruction_in[63:0]; // first two words of instruction
tag_val_out <= tag_val_in; // instruction tag value
vector_out <= vector_in; // this is a vector instruction
category_out <= category_in; // 00: multiformat, 01: single format, 10: jump
format_out <= format_in; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
mask_status_out <= mask_status_in == `REG_OPERAND;// mask register is used
mask_alternative_out <= mask_alternative_in; // mask register and fallback register used for alternative purposes
fallback_use_out <= fallback_use_in; // use of fallback register
num_operands_out <= num_operands_in; // number of source operands
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
offset_field_out <= offset_field_in; // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
immediate_field_out <= immediate_field_in; // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
scale_factor_out <= scale_factor_in; // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
memory_operand_out <= (rs_status_in >= `REG_POINTER) && !address_instruction; // The instruction has a memory operand
array_error_out <= array_error; // Array index exceeds limit;
options3_out <= option_bits_im3; // IM3 used for option bits
end
end
always_ff @(posedge clock) if (clock_enable) begin
last_stall <= (stall_in || waiting) && valid_in;
last_valid <= valid_in;
stall_predict_out <= (wait_next1 | wait_next2 | wait_next3) && valid_in; // predict stalling in next clock cycle
last_tag_val <= tag_val_in;
if (reset) begin
valid_out <= 0;
end else begin
// avoid sending an instruction that is not ready, or an instruction that has already been sent
valid_out <= valid_in && !waiting && !stall_in && (new_instruction | !valid_out);
end
// temporary debug outputs
debug1_out <= {address_offset[7:0], address_index[7:0], base_pointer[15:0]};
debug2_out <= write_data;
debug3_out[0] <= waiting;
debug3_out[1] <= stall_in;
debug3_out[2] <= last_stall;
debug3_out[4] <= wait_next1;
debug3_out[5] <= wait_next2;
debug3_out[6] <= wait_next3;
debug3_out[8] <= rs_val[`RB] && (rs_status_in >= `REG_POINTER) && !mask_off;
debug3_out[9] <= rt_val[`RB] && (rt_status_in >= `REG_INDEX) && !mask_off;
debug3_out[10] <= rd_val[`RB] && (rd_status_in != 0)&& result_type_in == `RESULT_MEM && !mask_off;
debug3_out[11] <= new_instruction;
debug3_out[12] <= valid_in;
debug3_out[14] <= valid_out; // preceding valid out
debug3_out[15] <= last_valid;
debug3_out[16] <= rs_val[`RB];
debug3_out[17] <= rt_val[`RB];
debug3_out[18] <= rd_val[`RB];
debug3_out[20] <= rs_val_temp[`RB];
debug3_out[21] <= rt_val_temp[`RB];
debug3_out[22] <= rd_val_temp[`RB];
debug3_out[24] <= write_en1 && rt_val_in[`TAG_WIDTH-1:0] == write_tag1_in;
debug3_out[25] <= write_en2 && rt_val_in[`TAG_WIDTH-1:0] == write_tag2_in;
debug3_out[26] <= write_en1 && rd_val_in[`TAG_WIDTH-1:0] == write_tag1_in;
debug3_out[27] <= write_en2 && rd_val_in[`TAG_WIDTH-1:0] == write_tag2_in;
debug3_out[28] <= option_bits_im3;
debug3_out[31] <= mask_off;
end
endmodule