URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
[/] [mod_sim_exp/] [trunk/] [bench/] [vhdl/] [mod_sim_exp_core_tb.vhd] - Rev 76
Go to most recent revision | Compare with Previous | Blame | View Log
---------------------------------------------------------------------- ---- mod_sim_exp_core_tb ---- ---- ---- ---- This file is part of the ---- ---- Modular Simultaneous Exponentiation Core project ---- ---- http://www.opencores.org/cores/mod_sim_exp/ ---- ---- ---- ---- Description ---- ---- testbench for the modular simultaneous exponentiation ---- ---- core. Performs some exponentiations to verify the design ---- ---- Takes input parameters from sim_input.txt en writes ---- ---- result and output to sim_output.txt ---- ---- ---- ---- Dependencies: ---- ---- - multiplier_core ---- ---- ---- ---- Authors: ---- ---- - Geoffrey Ottoy, DraMCo research group ---- ---- - Jonas De Craene, JonasDC@opencores.org ---- ---- ---- ---------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer. ---- ---- ---- ---- This source file is free software; you can redistribute it ---- ---- and/or modify it under the terms of the GNU Lesser General ---- ---- Public License as published by the Free Software Foundation; ---- ---- either version 2.1 of the License, or (at your option) any ---- ---- later version. ---- ---- ---- ---- This source is distributed in the hope that it will be ---- ---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- ---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- ---- PURPOSE. See the GNU Lesser General Public License for more ---- ---- details. ---- ---- ---- ---- You should have received a copy of the GNU Lesser General ---- ---- Public License along with this source; if not, download it ---- ---- from http://www.opencores.org/lgpl.shtml ---- ---- ---- ---------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; library std; use std.textio.all; library ieee; use ieee.std_logic_textio.all; library mod_sim_exp; use mod_sim_exp.mod_sim_exp_pkg.all; entity mod_sim_exp_core_tb is end mod_sim_exp_core_tb; architecture test of mod_sim_exp_core_tb is constant CLK_PERIOD : time := 10 ns; signal clk : std_logic := '0'; signal reset : std_logic := '1'; file input : text open read_mode is "src/sim_input.txt"; file output : text open write_mode is "out/sim_output.txt"; ------------------------------------------------------------------ -- Core parameters ------------------------------------------------------------------ constant C_NR_BITS_TOTAL : integer := 1536; constant C_NR_STAGES_TOTAL : integer := 96; constant C_NR_STAGES_LOW : integer := 32; constant C_SPLIT_PIPELINE : boolean := true; constant C_FIFO_DEPTH : integer := 32; -- set to (maximum exponent width)/16 constant C_MEM_STYLE : string := "generic"; -- xil_prim, generic, asym are valid options constant C_DEVICE : string := "xilinx"; -- xilinx, altera are valid options -- extra calculated constants constant NR_BITS_LOW : integer := (C_NR_BITS_TOTAL/C_NR_STAGES_TOTAL)*C_NR_STAGES_LOW; constant NR_BITS_HIGH : integer := C_NR_BITS_TOTAL-NR_BITS_LOW; ------------------------------------------------------------------ -- Signals for multiplier core memory space ------------------------------------------------------------------ signal core_rw_address : std_logic_vector (8 downto 0); signal core_data_in : std_logic_vector(31 downto 0); signal core_fifo_din : std_logic_vector(31 downto 0); signal core_data_out : std_logic_vector(31 downto 0); signal core_write_enable : std_logic; signal core_fifo_push : std_logic; ------------------------------------------------------------------ -- Signals for multiplier core control ------------------------------------------------------------------ signal core_start : std_logic; signal core_exp_m : std_logic; signal core_p_sel : std_logic_vector(1 downto 0); signal core_dest_op_single : std_logic_vector(1 downto 0); signal core_x_sel_single : std_logic_vector(1 downto 0); signal core_y_sel_single : std_logic_vector(1 downto 0); signal calc_time : std_logic; ------------------------------------------------------------------ -- Signals for multiplier core interrupt ------------------------------------------------------------------ signal core_fifo_full : std_logic; signal core_fifo_nopush : std_logic; signal core_ready : std_logic; signal core_mem_collision : std_logic; begin ------------------------------------------ -- Generate clk ------------------------------------------ clk_process : process begin while (true) loop clk <= '0'; wait for CLK_PERIOD/2; clk <= '1'; wait for CLK_PERIOD/2; end loop; end process; ------------------------------------------ -- Stimulus Process ------------------------------------------ stim_proc : process procedure waitclk(n : natural := 1) is begin for i in 1 to n loop wait until rising_edge(clk); end loop; end waitclk; procedure loadOp(constant op_sel : std_logic_vector(2 downto 0); variable op_data : std_logic_vector(2047 downto 0)) is begin wait until rising_edge(clk); core_rw_address <= op_sel & "000000"; wait until rising_edge(clk); core_write_enable <= '1'; for i in 0 to (1536/32)-1 loop assert (core_mem_collision='0') report "collision detected while writing operand!!" severity failure; case (core_p_sel) is when "11" => core_data_in <= op_data(((i+1)*32)-1 downto (i*32)); when "01" => if (i < 16) then core_data_in <= op_data(((i+1)*32)-1 downto (i*32)); else core_data_in <= x"00000000"; end if; when "10" => if (i >= 16) then core_data_in <= op_data(((i-15)*32)-1 downto ((i-16)*32)); else core_data_in <= x"00000000"; end if; when others => core_data_in <= x"00000000"; end case; wait until rising_edge(clk); core_rw_address <= core_rw_address+"000000001"; end loop; core_write_enable <= '0'; wait until rising_edge(clk); end loadOp; procedure readOp(constant op_sel : std_logic_vector(2 downto 0); variable op_data : out std_logic_vector(2047 downto 0); variable op_width : integer) is begin wait until rising_edge(clk); core_dest_op_single <= op_sel(1 downto 0); if (core_p_sel = "10") then core_rw_address <= op_sel & "010000"; else core_rw_address <= op_sel & "000000"; end if; waitclk(2); for i in 0 to (op_width/32)-2 loop op_data(((i+1)*32)-1 downto (i*32)) := core_data_out; core_rw_address <= core_rw_address+"000000001"; waitclk(2); end loop; op_data(op_width-1 downto op_width-32) := core_data_out; wait until rising_edge(clk); end readOp; function ToString(constant Timeval : time) return string is variable StrPtr : line; begin write(StrPtr,Timeval); return StrPtr.all; end ToString; -- variables to read file variable L : line; variable Lw : line; variable base_width : integer; variable exponent_width : integer; variable g0 : std_logic_vector(2047 downto 0) := (others=>'0'); variable g1 : std_logic_vector(2047 downto 0) := (others=>'0'); variable e0 : std_logic_vector(2047 downto 0) := (others=>'0'); variable e1 : std_logic_vector(2047 downto 0) := (others=>'0'); variable m : std_logic_vector(2047 downto 0) := (others=>'0'); variable R2 : std_logic_vector(2047 downto 0) := (others=>'0'); variable R : std_logic_vector(2047 downto 0) := (others=>'0'); variable gt0 : std_logic_vector(2047 downto 0) := (others=>'0'); variable gt1 : std_logic_vector(2047 downto 0) := (others=>'0'); variable gt01 : std_logic_vector(2047 downto 0) := (others=>'0'); variable one : std_logic_vector(2047 downto 0) := std_logic_vector(conv_unsigned(1, 2048)); variable result : std_logic_vector(2047 downto 0) := (others=>'0'); variable data_read : std_logic_vector(2047 downto 0) := (others=>'0'); variable good_value : boolean; variable param_count : integer := 0; -- constants for operand selection constant op_modulus : std_logic_vector(2 downto 0) := "100"; constant op_0 : std_logic_vector(2 downto 0) := "000"; constant op_1 : std_logic_vector(2 downto 0) := "001"; constant op_2 : std_logic_vector(2 downto 0) := "010"; constant op_3 : std_logic_vector(2 downto 0) := "011"; variable timer : time; begin -- initialisation -- memory core_write_enable <= '0'; core_data_in <= x"00000000"; core_rw_address <= "000000000"; -- fifo core_fifo_din <= x"00000000"; core_fifo_push <= '0'; -- control core_start <= '0'; core_exp_m <= '0'; core_x_sel_single <= "00"; core_y_sel_single <= "01"; core_dest_op_single <= "01"; core_p_sel <= "11"; -- Generate active high reset signal reset <= '1'; waitclk(100); reset <= '0'; waitclk(100); while not endfile(input) loop readline(input, L); -- read next line next when L(1)='-'; -- skip comment lines -- read input values case param_count is when 0 => -- base width read(L, base_width, good_value); assert good_value report "Can not read base width" severity failure; assert false report "Simulating exponentiation" severity note; write(Lw, string'("----------------------------------------------")); writeline(output, Lw); write(Lw, string'("-- EXPONENTIATION --")); writeline(output, Lw); write(Lw, string'("----------------------------------------------")); writeline(output, Lw); write(Lw, string'("----- Variables used:")); writeline(output, Lw); write(Lw, string'("base width: ")); write(Lw, base_width); writeline(output, Lw); case (base_width) is when C_NR_BITS_TOTAL => when NR_BITS_HIGH => when NR_BITS_LOW => when others => write(Lw, string'("=> incompatible base width!!!")); writeline(output, Lw); assert false report "incompatible base width!!!" severity failure; end case; when 1 => -- exponent width read(L, exponent_width, good_value); assert good_value report "Can not read exponent width" severity failure; write(Lw, string'("exponent width: ")); write(Lw, exponent_width); writeline(output, Lw); when 2 => -- g0 hread(L, g0(base_width-1 downto 0), good_value); assert good_value report "Can not read g0! (wrong lenght?)" severity failure; write(Lw, string'("g0: ")); hwrite(Lw, g0(base_width-1 downto 0)); writeline(output, Lw); when 3 => -- g1 hread(L, g1(base_width-1 downto 0), good_value); assert good_value report "Can not read g1! (wrong lenght?)" severity failure; write(Lw, string'("g1: ")); hwrite(Lw, g1(base_width-1 downto 0)); writeline(output, Lw); when 4 => -- e0 hread(L, e0(exponent_width-1 downto 0), good_value); assert good_value report "Can not read e0! (wrong lenght?)" severity failure; write(Lw, string'("e0: ")); hwrite(Lw, e0(exponent_width-1 downto 0)); writeline(output, Lw); when 5 => -- e1 hread(L, e1(exponent_width-1 downto 0), good_value); assert good_value report "Can not read e1! (wrong lenght?)" severity failure; write(Lw, string'("e1: ")); hwrite(Lw, e1(exponent_width-1 downto 0)); writeline(output, Lw); when 6 => -- m hread(L, m(base_width-1 downto 0), good_value); assert good_value report "Can not read m! (wrong lenght?)" severity failure; write(Lw, string'("m: ")); hwrite(Lw, m(base_width-1 downto 0)); writeline(output, Lw); when 7 => -- R^2 hread(L, R2(base_width-1 downto 0), good_value); assert good_value report "Can not read R2! (wrong lenght?)" severity failure; write(Lw, string'("R2: ")); hwrite(Lw, R2(base_width-1 downto 0)); writeline(output, Lw); when 8 => -- R hread(L, R(base_width-1 downto 0), good_value); assert good_value report "Can not read R! (wrong lenght?)" severity failure; when 9 => -- gt0 hread(L, gt0(base_width-1 downto 0), good_value); assert good_value report "Can not read gt0! (wrong lenght?)" severity failure; when 10 => -- gt1 hread(L, gt1(base_width-1 downto 0), good_value); assert good_value report "Can not read gt1! (wrong lenght?)" severity failure; when 11 => -- gt01 hread(L, gt01(base_width-1 downto 0), good_value); assert good_value report "Can not read gt01! (wrong lenght?)" severity failure; -- select pipeline for all computations ---------------------------------------- writeline(output, Lw); write(Lw, string'("----- Selecting pipeline: ")); writeline(output, Lw); case (base_width) is when C_NR_BITS_TOTAL => core_p_sel <= "11"; write(Lw, string'(" Full pipeline selected")); when NR_BITS_HIGH => core_p_sel <= "10"; write(Lw, string'(" Upper pipeline selected")); when NR_BITS_LOW => core_p_sel <= "01"; write(Lw, string'(" Lower pipeline selected")); when others => write(Lw, string'(" Invallid bitwidth for design")); assert false report "impossible basewidth!" severity failure; end case; writeline(output, Lw); writeline(output, Lw); write(Lw, string'("----- Writing operands:")); writeline(output, Lw); -- load the modulus -------------------- loadOp(op_modulus, m); -- visual check needed write(Lw, string'(" m written")); writeline(output, Lw); -- load g0 ----------- loadOp(op_0, g0); -- verify readOp(op_0, data_read, base_width); if (g0(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" g0 written in operand_0")); writeline(output, Lw); else write(Lw, string'(" failed to write g0 to operand_0!")); writeline(output, Lw); assert false report "Load g0 to op0 data verify failed!!" severity failure; end if; -- load g1 ----------- loadOp(op_1, g1); -- verify readOp(op_1, data_read, base_width); if (g1(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" g1 written in operand_1")); writeline(output, Lw); else write(Lw, string'(" failed to write g1 to operand_1!")); writeline(output, Lw); assert false report "Load g1 to op1 data verify failed!!" severity failure; end if; -- load R2 ----------- loadOp(op_2, R2); -- verify readOp(op_2, data_read, base_width); if (R2(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" R^2 written in operand_2")); writeline(output, Lw); else write(Lw, string'(" failed to write R^2 to operand_2!")); writeline(output, Lw); assert false report "Load R2 to op2 data verify failed!!" severity failure; end if; -- load a=1 ------------ loadOp(op_3, one); -- verify readOp(op_3, data_read, base_width); if (one(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" 1 written in operand_3")); writeline(output, Lw); else write(Lw, string'(" failed to write 1 to operand_3!")); writeline(output, Lw); assert false report "Load 1 to op3 data verify failed!!" severity failure; end if; writeline(output, Lw); write(Lw, string'("----- Pre-computations: ")); writeline(output, Lw); -- compute gt0 --------------- core_x_sel_single <= "00"; -- g0 core_y_sel_single <= "10"; -- R^2 core_dest_op_single <= "00"; -- op_0 = (g0 * R) mod m wait until rising_edge(clk); timer := NOW; core_start <= '1'; wait until rising_edge(clk); core_start <= '0'; wait until core_ready = '1'; timer := NOW-timer; waitclk(10); readOp(op_0, data_read, base_width); write(Lw, string'(" Computed gt0: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read gt0: ")); hwrite(Lw, gt0(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (gt0(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => gt0 is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: gt0 is incorrect!!!")); writeline(output, Lw); assert false report "gt0 is incorrect!!!" severity failure; end if; -- compute gt1 --------------- core_x_sel_single <= "01"; -- g1 core_y_sel_single <= "10"; -- R^2 core_dest_op_single <= "01"; -- op_1 = (g1 * R) mod m wait until rising_edge(clk); timer := NOW; core_start <= '1'; wait until rising_edge(clk); core_start <= '0'; wait until core_ready = '1'; timer := NOW-timer; waitclk(10); readOp(op_1, data_read, base_width); write(Lw, string'(" Computed gt1: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read gt1: ")); hwrite(Lw, gt1(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (gt1(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => gt1 is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: gt1 is incorrect!!!")); writeline(output, Lw); assert false report "gt1 is incorrect!!!" severity failure; end if; -- compute a ------------- core_x_sel_single <= "10"; -- R^2 core_y_sel_single <= "11"; -- 1 core_dest_op_single <= "11"; -- op_3 = (R) mod m wait until rising_edge(clk); core_start <= '1'; timer := NOW; wait until rising_edge(clk); core_start <= '0'; wait until core_ready = '1'; timer := NOW-timer; waitclk(10); readOp(op_3, data_read, base_width); write(Lw, string'(" Computed a=(R)mod m: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read (R)mod m: ")); hwrite(Lw, R(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (R(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => (R)mod m is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: (R)mod m is incorrect!!!")); writeline(output, Lw); assert false report "(R)mod m is incorrect!!!" severity failure; end if; -- compute gt01 --------------- core_x_sel_single <= "00"; -- gt0 core_y_sel_single <= "01"; -- gt1 core_dest_op_single <= "10"; -- op_2 = (gt0 * gt1) mod m wait until rising_edge(clk); core_start <= '1'; timer := NOW; wait until rising_edge(clk); core_start <= '0'; wait until core_ready = '1'; timer := NOW-timer; waitclk(10); readOp(op_2, data_read, base_width); write(Lw, string'(" Computed gt01: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read gt01: ")); hwrite(Lw, gt01(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (gt01(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => gt01 is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: gt01 is incorrect!!!")); writeline(output, Lw); assert false report "gt01 is incorrect!!!" severity failure; end if; -- load exponent fifo ---------------------- writeline(output, Lw); write(Lw, string'("----- Loading exponent fifo: ")); writeline(output, Lw); for i in (exponent_width/16)-1 downto 0 loop core_fifo_din <= e1((i*16)+15 downto (i*16)) & e0((i*16)+15 downto (i*16)); wait until rising_edge(clk); assert (core_fifo_full='0') report "Fifo error, fifo full" severity failure; core_fifo_push <= '1'; wait until rising_edge(clk); assert (core_fifo_full='0' and core_fifo_nopush='0') report "Fifo error, fifo nopush" severity failure; core_fifo_push <= '0'; wait until rising_edge(clk); end loop; waitclk(10); write(Lw, string'(" => Done")); writeline(output, Lw); -- start exponentiation ------------------------ writeline(output, Lw); write(Lw, string'("----- Starting exponentiation: ")); writeline(output, Lw); core_exp_m <= '1'; wait until rising_edge(clk); timer := NOW; core_start <= '1'; wait until rising_edge(clk); core_start <= '0'; wait until core_ready='1'; timer := NOW-timer; waitclk(10); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, ((C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD*7*exponent_width)/4); writeline(output, Lw); write(Lw, string'(" => Done")); core_exp_m <= '0'; writeline(output, Lw); -- post-computations --------------------- writeline(output, Lw); write(Lw, string'("----- Post-computations: ")); writeline(output, Lw); -- load in 1 to operand 2 loadOp(op_2, one); -- verify readOp(op_2, data_read, base_width); if (one(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" 1 written in operand_2")); writeline(output, Lw); else write(Lw, string'(" failed to write 1 to operand_2!")); writeline(output, Lw); assert false report "Load 1 to op2 data verify failed!!" severity failure; end if; -- compute result core_x_sel_single <= "11"; -- a core_y_sel_single <= "10"; -- 1 core_dest_op_single <= "11"; -- op_3 = (a) mod m wait until rising_edge(clk); timer := NOW; core_start <= '1'; wait until rising_edge(clk); core_start <= '0'; wait until core_ready = '1'; timer := NOW-timer; waitclk(10); readOp(op_3, data_read, base_width); write(Lw, string'(" Computed result: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); when 12 => -- check with result hread(L, result(base_width-1 downto 0), good_value); assert good_value report "Can not read result! (wrong lenght?)" severity failure; writeline(output, Lw); write(Lw, string'("----- verifying result: ")); writeline(output, Lw); write(Lw, string'(" Read result: ")); hwrite(Lw, result(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Computed result: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); if (result(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => Result is correct!")); writeline(output, Lw); else write(Lw, string'(" Error: result is incorrect!!!")); writeline(output, Lw); assert false report "result is incorrect!!!" severity failure; end if; writeline(output, Lw); when others => assert false report "undefined state!" severity failure; end case; if (param_count = 12) then param_count := 0; else param_count := param_count+1; end if; end loop; wait for 1 us; assert false report "End of simulation" severity failure; end process; ------------------------------------------ -- Multiplier core instance ------------------------------------------ the_multiplier : mod_sim_exp.mod_sim_exp_pkg.mod_sim_exp_core generic map( C_NR_BITS_TOTAL => C_NR_BITS_TOTAL, C_NR_STAGES_TOTAL => C_NR_STAGES_TOTAL, C_NR_STAGES_LOW => C_NR_STAGES_LOW, C_SPLIT_PIPELINE => C_SPLIT_PIPELINE, C_FIFO_DEPTH => C_FIFO_DEPTH, C_MEM_STYLE => C_MEM_STYLE, -- xil_prim, generic, asym are valid options C_DEVICE => C_DEVICE -- xilinx, altera are valid options ) port map( clk => clk, reset => reset, -- operand memory interface (plb shared memory) write_enable => core_write_enable, data_in => core_data_in, rw_address => core_rw_address, data_out => core_data_out, collision => core_mem_collision, -- op_sel fifo interface fifo_din => core_fifo_din, fifo_push => core_fifo_push, fifo_full => core_fifo_full, fifo_nopush => core_fifo_nopush, -- ctrl signals start => core_start, exp_m => core_exp_m, ready => core_ready, x_sel_single => core_x_sel_single, y_sel_single => core_y_sel_single, dest_op_single => core_dest_op_single, p_sel => core_p_sel, calc_time => calc_time, modulus_sel => "0" ); end test;
Go to most recent revision | Compare with Previous | Blame | View Log