URL
https://opencores.org/ocsvn/qspiflash/qspiflash/trunk
Subversion Repositories qspiflash
[/] [qspiflash/] [trunk/] [bench/] [cpp/] [qspiflashsim.cpp] - Rev 16
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // // Filename: qspiflashsim.cpp // // Project: Wishbone Controlled Quad SPI Flash Controller // // Purpose: This library simulates the operation of a Quad-SPI commanded // flash, such as the S25FL032P used on the Basys-3 development // board by Digilent. // // This simulator is useful for testing in a Verilator/C++ // environment, where this simulator can be used in place of // the actual hardware. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015,2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // #include <stdio.h> #include <string.h> #include <assert.h> #include <stdlib.h> #include <stdint.h> #include "qspiflashsim.h" static const unsigned DEVID = 0x0115, DEVESD = 0x014, MICROSECONDS = 100, MILLISECONDS = MICROSECONDS * 1000, SECONDS = MILLISECONDS * 1000, tW = 50 * MICROSECONDS, // write config cycle time tBE = 32 * SECONDS, tDP = 10 * SECONDS, tRES = 30 * SECONDS, // Shall we artificially speed up this process? tPP = 12 * MICROSECONDS, tSE = 15 * MILLISECONDS; // or keep it at the original speed // tPP = 1200 * MICROSECONDS, // tSE = 1500 * MILLISECONDS; QSPIFLASHSIM::QSPIFLASHSIM(const int lglen, bool debug) { m_membytes = (1<<lglen); m_memmask = (m_membytes - 1); m_mem = new char[m_membytes]; m_pmem = new char[256]; m_state = QSPIF_IDLE; m_last_sck = 1; m_write_count = 0; m_ireg = m_oreg = 0; m_sreg = 0x01c; m_creg = 0x001; // Iinitial creg on delivery m_quad_mode = false; m_mode_byte = 0; memset(m_mem, 0x0ff, m_membytes); } void QSPIFLASHSIM::load(const unsigned addr, const char *fname) { FILE *fp; size_t len; int nr = 0; if (addr >= m_membytes) return; // If not given, then length is from the given address until the end // of the flash memory len = m_membytes-addr*4; if (NULL != (fp = fopen(fname, "r"))) { nr = fread(&m_mem[addr], sizeof(char), len, fp); fclose(fp); if (nr == 0) { fprintf(stderr, "SPI-FLASH: Could not read %s\n", fname); perror("O/S Err:"); } } else { fprintf(stderr, "SPI-FLASH: Could not open %s\n", fname); perror("O/S Err:"); } for(unsigned i=nr; i<m_membytes; i++) m_mem[i] = 0x0ff; } void QSPIFLASHSIM::load(const uint32_t offset, const char *data, const uint32_t len) { uint32_t moff = (offset & (m_memmask)); memcpy(&m_mem[moff], data, len); } #define QOREG(A) m_oreg = ((m_oreg & (~0x0ff))|(A&0x0ff)) int QSPIFLASHSIM::operator()(const int csn, const int sck, const int dat) { // Keep track of a timer to determine when page program and erase // cycles complete. if (m_write_count > 0) { if (0 == (--m_write_count)) {// When done with erase/page pgm, m_sreg &= 0x0fc; // Clear the write in progress bit if (m_debug) printf("Write complete, clearing WIP (inside SIM)\n"); } } if (csn) { m_last_sck = 1; m_ireg = 0; m_oreg = 0; m_count= 0; if ((QSPIF_PP == m_state)||(QSPIF_QPP == m_state)) { // Start a page program if (m_debug) printf("QSPI: Page Program write cycle begins\n"); if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07); if (m_debug) printf("QSPI: pmem = %08lx\n", (unsigned long)m_pmem); m_write_count = tPP; m_state = QSPIF_IDLE; m_sreg &= (~QSPIF_WEL_FLAG); m_sreg |= (QSPIF_WIP_FLAG); for(int i=0; i<256; i++) { /* if (m_debug) printf("%02x: m_mem[%02x] = %02x &= %02x = %02x\n", i, (m_addr&(~0x0ff))+i, m_mem[(m_addr&(~0x0ff))+i]&0x0ff, m_pmem[i]&0x0ff, m_mem[(m_addr&(~0x0ff))+i]& m_pmem[i]&0x0ff); */ m_mem[(m_addr&(~0x0ff))+i] &= m_pmem[i]; } m_quad_mode = false; } else if (m_state == QSPIF_SECTOR_ERASE) { if (m_debug) printf("Actually Erasing sector, from %08x\n", m_addr); m_write_count = tSE; m_state = QSPIF_IDLE; m_sreg &= (~QSPIF_WEL_FLAG); m_sreg |= (QSPIF_WIP_FLAG); m_addr &= (-1<<16); for(int i=0; i<(1<<16); i++) m_mem[m_addr + i] = 0x0ff; if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count); } else if (QSPIF_WRSR == m_state) { if (m_debug) printf("Actually writing status register\n"); m_write_count = tW; m_state = QSPIF_IDLE; m_sreg &= (~QSPIF_WEL_FLAG); m_sreg |= (QSPIF_WIP_FLAG); } else if (QSPIF_CLSR == m_state) { if (m_debug) printf("Actually clearing the status register bits\n"); m_state = QSPIF_IDLE; m_sreg &= 0x09f; } else if (m_state == QSPIF_BULK_ERASE) { m_write_count = tBE; m_state = QSPIF_IDLE; m_sreg &= (~QSPIF_WEL_FLAG); m_sreg |= (QSPIF_WIP_FLAG); for(unsigned i=0; i<m_membytes; i++) m_mem[i] = 0x0ff; } else if (m_state == QSPIF_DEEP_POWER_DOWN) { m_write_count = tDP; m_state = QSPIF_IDLE; } else if (m_state == QSPIF_RELEASE) { m_write_count = tRES; m_state = QSPIF_IDLE; } else if (m_state == QSPIF_QUAD_READ_CMD) { if ((m_mode_byte & 0x0f0)!=0x0a0) m_quad_mode = false; else m_state = QSPIF_QUAD_READ_IDLE; } else if (m_state == QSPIF_QUAD_READ) { if ((m_mode_byte & 0x0f0)!=0x0a0) m_quad_mode = false; else m_state = QSPIF_QUAD_READ_IDLE; } else if (m_state == QSPIF_QUAD_READ_IDLE) { } m_oreg = 0x0fe; return dat; } else if ((!m_last_sck)||(sck == m_last_sck)) { // Only change on the falling clock edge // printf("SFLASH-SKIP, CLK=%d -> %d\n", m_last_sck, sck); m_last_sck = sck; if (m_quad_mode) return (m_oreg>>8)&0x0f; else // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d); return (m_oreg & 0x0100)?2:0; } // We'll only get here if ... // last_sck = 1, and sck = 0, thus transitioning on the // negative edge as with everything else in this interface if (m_quad_mode) { m_ireg = (m_ireg << 4) | (dat & 0x0f); m_count+=4; m_oreg <<= 4; } else { m_ireg = (m_ireg << 1) | (dat & 1); m_count++; m_oreg <<= 1; } // printf("PROCESS, COUNT = %d, IREG = %02x\n", m_count, m_ireg); if (m_state == QSPIF_QUAD_READ_IDLE) { assert(m_quad_mode); if (m_count == 24) { if (m_debug) printf("QSPI: Entering from Quad-Read Idle to Quad-Read\n"); if (m_debug) printf("QSPI: QI/O Idle Addr = %02x\n", m_ireg&0x0ffffff); m_addr = (m_ireg) & m_memmask; assert((m_addr & (~(m_memmask)))==0); m_state = QSPIF_QUAD_READ; } m_oreg = 0; } else if (m_count == 8) { QOREG(0x0a5); // Figure out what command we've been given if (m_debug) printf("SPI FLASH CMD %02x\n", m_ireg&0x0ff); switch(m_ireg & 0x0ff) { case 0x01: // Write status register if (2 !=(m_sreg & 0x203)) { if (m_debug) printf("QSPI: WEL not set, cannot write status reg\n"); m_state = QSPIF_INVALID; } else m_state = QSPIF_WRSR; break; case 0x02: // Page program if (2 != (m_sreg & 0x203)) { if (m_debug) printf("QSPI: Cannot program at this time, SREG = %x\n", m_sreg); m_state = QSPIF_INVALID; } else { m_state = QSPIF_PP; if (m_debug) printf("PAGE-PROGRAM COMMAND ACCEPTED\n"); } break; case 0x03: // Read data bytes // Our clock won't support this command, so go // to an invalid state if (m_debug) printf("QSPI INVALID: This sim does not support slow reading\n"); m_state = QSPIF_INVALID; break; case 0x04: // Write disable m_state = QSPIF_IDLE; m_sreg &= (~QSPIF_WEL_FLAG); break; case 0x05: // Read status register m_state = QSPIF_RDSR; if (m_debug) printf("QSPI: READING STATUS REGISTER: %02x\n", m_sreg); QOREG(m_sreg); break; case 0x06: // Write enable m_state = QSPIF_IDLE; m_sreg |= QSPIF_WEL_FLAG; if (m_debug) printf("QSPI: WRITE-ENABLE COMMAND ACCEPTED\n"); break; case 0x0b: // Here's the read that we support if (m_debug) printf("QSPI: FAST-READ (single-bit)\n"); m_state = QSPIF_FAST_READ; break; case 0x30: if (m_debug) printf("QSPI: CLEAR STATUS REGISTER COMMAND\n"); m_state = QSPIF_CLSR; break; case 0x32: // QUAD Page program, 4 bits at a time if (2 != (m_sreg & 0x203)) { if (m_debug) printf("QSPI: Cannot program at this time, SREG = %x\n", m_sreg); m_state = QSPIF_INVALID; } else { m_state = QSPIF_QPP; if (m_debug) printf("QSPI: QUAD-PAGE-PROGRAM COMMAND ACCEPTED\n"); if (m_debug) printf("QSPI: pmem = %08lx\n", (unsigned long)m_pmem); } break; case 0x35: // Read configuration register m_state = QSPIF_RDCR; if (m_debug) printf("QSPI: READING CONFIGURATION REGISTER: %02x\n", m_creg); QOREG(m_creg); break; case 0x9f: // Read ID m_state = QSPIF_RDID; if (m_debug) printf("QSPI: READING ID, %02x\n", (DEVID>>24)&0x0ff); QOREG(0xfe); break; case 0xab: // Release from DEEP POWER DOWN if (m_sreg & QSPIF_DEEP_POWER_DOWN_FLAG) { if (m_debug) printf("QSPI: Release from deep power down\n"); m_sreg &= (~QSPIF_DEEP_POWER_DOWN_FLAG); m_write_count = tRES; } m_state = QSPIF_RELEASE; break; case 0xb9: // DEEP POWER DOWN if (0 != (m_sreg & 0x01)) { if (m_debug) printf("QSPI: Cannot enter DEEP POWER DOWN, in middle of write/erase\n"); m_state = QSPIF_INVALID; } else { m_sreg |= QSPIF_DEEP_POWER_DOWN_FLAG; m_state = QSPIF_IDLE; } break; case 0xc7: // Bulk Erase if (2 != (m_sreg & 0x203)) { if (m_debug) printf("QSPI: WEL not set, cannot erase device\n"); m_state = QSPIF_INVALID; } else m_state = QSPIF_BULK_ERASE; break; case 0xd8: // Sector Erase if (2 != (m_sreg & 0x203)) { if (m_debug) printf("QSPI: WEL not set, cannot erase sector\n"); m_state = QSPIF_INVALID; } else { m_state = QSPIF_SECTOR_ERASE; if (m_debug) printf("QSPI: SECTOR_ERASE COMMAND\n"); } break; case 0x0eb: // Here's the (other) read that we support // printf("QSPI: QUAD-I/O-READ\n"); m_state = QSPIF_QUAD_READ_CMD; m_quad_mode = true; break; default: printf("QSPI: UNRECOGNIZED SPI FLASH CMD: %02x\n", m_ireg&0x0ff); m_state = QSPIF_INVALID; assert(0 && "Unrecognized command\n"); break; } } else if ((0 == (m_count&0x07))&&(m_count != 0)) { QOREG(0); switch(m_state) { case QSPIF_IDLE: printf("TOO MANY CLOCKS, SPIF in IDLE\n"); break; case QSPIF_WRSR: if (m_count == 16) { m_sreg = (m_sreg & 0x061) | (m_ireg & 0x09c); if (m_debug) printf("Request to set sreg to 0x%02x\n", m_ireg&0x0ff); } else if (m_count == 24) { m_creg = (m_creg & 0x0fd) | (m_ireg & 0x02); if (m_debug) printf("Request to set creg to 0x%02x\n", m_ireg&0x0ff); } else { printf("TOO MANY CLOCKS FOR WRR!!!\n"); exit(-2); m_state = QSPIF_IDLE; } break; case QSPIF_CLSR: assert(0 && "Too many clocks for CLSR command!!\n"); break; case QSPIF_RDID: if (m_count == 32) { m_addr = m_ireg & m_memmask; if (m_debug) printf("READID, ADDR = %08x\n", m_addr); QOREG((DEVID>>8)); if (m_debug) printf("QSPI: READING ID, %02x\n", (DEVID>>8)&0x0ff); } else if (m_count > 32) { if (((m_count-32)>>3)&1) QOREG((DEVID)); else QOREG((DEVID>>8)); if (m_debug) printf("QSPI: READING ID, %02x -- DONE\n", 0x00); } // m_oreg = (DEVID >> (2-(m_count>>3)-1)) & 0x0ff; break; case QSPIF_RDSR: // printf("Read SREG = %02x, wait = %08x\n", m_sreg, // m_write_count); QOREG(m_sreg); break; case QSPIF_RDCR: if (m_debug) printf("Read CREG = %02x\n", m_creg); QOREG(m_creg); break; case QSPIF_FAST_READ: if (m_count == 32) { m_addr = m_ireg & m_memmask; if (m_debug) printf("FAST READ, ADDR = %08x\n", m_addr); QOREG(0x0c3); assert((m_addr & (~(m_memmask)))==0); } else if ((m_count >= 40)&&(0 == (m_sreg&0x01))) { //if (m_count == 40) //printf("DUMMY BYTE COMPLETE ...\n"); QOREG(m_mem[m_addr++]); // if (m_debug) printf("SPIF[%08x] = %02x\n", m_addr-1, m_oreg); } else m_oreg = 0; break; case QSPIF_QUAD_READ_CMD: // The command to go into quad read mode took 8 bits // that changes the timings, else we'd use quad_Read // below if (m_count == 32) { m_addr = m_ireg & m_memmask; // printf("FAST READ, ADDR = %08x\n", m_addr); // printf("QSPI: QUAD READ, ADDR = %06x\n", m_addr); assert((m_addr & (~(m_memmask)))==0); } else if (m_count == 32+24) { m_mode_byte = (m_ireg>>16) & 0x0ff; // printf("QSPI: MODE BYTE = %02x\n", m_mode_byte); } else if ((m_count > 32+24)&&(0 == (m_sreg&0x01))) { QOREG(m_mem[m_addr++]); // printf("QSPIF[%08x]/QR = %02x\n", // m_addr-1, m_oreg); } else m_oreg = 0; break; case QSPIF_QUAD_READ: if (m_count == 32) { m_mode_byte = (m_ireg & 0x0ff); // printf("QSPI/QR: MODE BYTE = %02x\n", m_mode_byte); } else if ((m_count >= 32+16)&&(0 == (m_sreg&0x01))) { QOREG(m_mem[m_addr++]); // printf("QSPIF[%08x]/QR = %02x\n", m_addr-1, m_oreg & 0x0ff); } else m_oreg = 0; break; case QSPIF_PP: if (m_count == 32) { m_addr = m_ireg & m_memmask; if (m_debug) printf("QSPI: PAGE-PROGRAM ADDR = %06x\n", m_addr); assert((m_addr & (~(m_memmask)))==0); // m_page = m_addr >> 8; for(int i=0; i<256; i++) m_pmem[i] = 0x0ff; } else if (m_count >= 40) { m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff; // printf("QSPI: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff)); m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff); } break; case QSPIF_QPP: if (m_count == 32) { m_addr = m_ireg & m_memmask; m_quad_mode = true; if (m_debug) printf("QSPI/QR: PAGE-PROGRAM ADDR = %06x\n", m_addr); assert((m_addr & (~(m_memmask)))==0); // m_page = m_addr >> 8; for(int i=0; i<256; i++) m_pmem[i] = 0x0ff; } else if (m_count >= 40) { m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff; // printf("QSPI/QR: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff)); m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff); } break; case QSPIF_SECTOR_ERASE: if (m_count == 32) { m_addr = m_ireg & 0x0ffc000; if (m_debug) printf("SECTOR_ERASE ADDRESS = %08x\n", m_addr); assert((m_addr & 0xfc00000)==0); } break; case QSPIF_RELEASE: if (m_count >= 32) { QOREG(DEVESD); } break; default: break; } } // else printf("SFLASH->count = %d\n", m_count); m_last_sck = sck; if (m_quad_mode) return (m_oreg>>8)&0x0f; else // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d); return (m_oreg & 0x0100)?2:0; }