URL
https://opencores.org/ocsvn/versatile_library/versatile_library/trunk
Subversion Repositories versatile_library
[/] [versatile_library/] [trunk/] [rtl/] [verilog/] [versatile_library_actel.v] - Rev 77
Go to most recent revision | Compare with Previous | Blame | View Log
// default SYN_KEEP definition ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, clock and reset //// //// //// //// Description //// //// Logic related to clock and reset //// //// //// //// //// //// To Do: //// //// - add more different registers //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `timescale 1 ns/100 ps // Global buffer // usage: // use to enable global buffers for high fan out signals such as clock and reset // Version: 8.4 8.4.0.33 module gbuf(GL,CLK); output GL; input CLK; wire GND; GND GND_1_net(.Y(GND)); CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(GND), .DLYGL1(GND), .DLYGL2(GND), .DLYGL3(GND), .DLYGL4(GND)) /* synthesis black_box */; endmodule `timescale 1 ns/1 ns module vl_gbuf ( i, o); input i; output o; `ifdef SIM_GBUF assign o=i; `else gbuf gbuf_i0 ( .CLK(i), .GL(o)); `endif endmodule //ACTEL // sync reset // input active lo async reset, normally from external reset generator and/or switch // output active high global reset sync with two DFFs `timescale 1 ns/100 ps module vl_sync_rst ( rst_n_i, rst_o, clk); input rst_n_i, clk; output rst_o; reg [1:0] tmp; always @ (posedge clk or negedge rst_n_i) if (!rst_n_i) tmp <= 2'b11; else tmp <= {1'b0,tmp[1]}; vl_gbuf buf_i0( .i(tmp[0]), .o(rst_o)); endmodule // vl_pll /////////////////////////////////////////////////////////////////////////////// `timescale 1 ps/1 ps module vl_pll ( clk_i, rst_n_i, lock, clk_o, rst_o); parameter index = 0; parameter number_of_clk = 1; parameter period_time_0 = 20000; parameter period_time_1 = 20000; parameter period_time_2 = 20000; parameter lock_delay = 2000000; input clk_i, rst_n_i; output lock; output reg [0:number_of_clk-1] clk_o; output [0:number_of_clk-1] rst_o; `ifdef SIM_PLL always #((period_time_0)/2) clk_o[0] <= (!rst_n_i) ? 0 : ~clk_o[0]; generate if (number_of_clk > 1) always #((period_time_1)/2) clk_o[1] <= (!rst_n_i) ? 0 : ~clk_o[1]; endgenerate generate if (number_of_clk > 2) always #((period_time_2)/2) clk_o[2] <= (!rst_n_i) ? 0 : ~clk_o[2]; endgenerate genvar i; generate for (i=0;i<number_of_clk;i=i+1) begin: clock vl_sync_rst rst_i0 ( .rst_n_i(rst_n_i | lock), .rst_o(rst_o[i]), .clk(clk_o[i])); end endgenerate assign #lock_delay lock = rst_n_i; endmodule `else generate if (number_of_clk==1 & index==0) begin pll0 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==0 generate if (number_of_clk==1 & index==1) begin pll1 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==1 generate if (number_of_clk==1 & index==2) begin pll2 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==2 generate if (number_of_clk==1 & index==3) begin pll3 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==0 generate if (number_of_clk==2 & index==0) begin pll0 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==0 generate if (number_of_clk==2 & index==1) begin pll1 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==1 generate if (number_of_clk==2 & index==2) begin pll2 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==2 generate if (number_of_clk==2 & index==3) begin pll3 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==0 generate if (number_of_clk==3 & index==0) begin pll0 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==0 generate if (number_of_clk==3 & index==1) begin pll1 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==1 generate if (number_of_clk==3 & index==2) begin pll2 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==2 generate if (number_of_clk==3 & index==3) begin pll3 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==0 genvar i; generate for (i=0;i<number_of_clk;i=i+1) begin: clock vl_sync_rst rst_i0 ( .rst_n_i(rst_n_i | lock), .rst_o(rst_o), .clk(clk_o[i])); end endgenerate endmodule `endif /////////////////////////////////////////////////////////////////////////////// //actel ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, registers //// //// //// //// Description //// //// Different type of registers //// //// //// //// //// //// To Do: //// //// - add more different registers //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module vl_dff ( d, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else q <= d; endmodule module vl_dff_array ( d, q, clk, rst); parameter width = 1; parameter depth = 2; parameter reset_value = 1'b0; input [width-1:0] d; input clk, rst; output [width-1:0] q; reg [0:depth-1] q_tmp [width-1:0]; integer i; always @ (posedge clk or posedge rst) if (rst) begin for (i=0;i<depth;i=i+1) q_tmp[i] <= {width{reset_value}}; end else begin q_tmp[0] <= d; for (i=1;i<depth;i=i+1) q_tmp[i] <= q_tmp[i-1]; end assign q = q_tmp[depth-1]; endmodule module vl_dff_ce ( d, ce, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input ce, clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (ce) q <= d; endmodule module vl_dff_ce_clear ( d, ce, clear, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input ce, clear, clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (ce) if (clear) q <= {width{1'b0}}; else q <= d; endmodule module vl_dff_ce_set ( d, ce, set, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input ce, set, clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (ce) if (set) q <= {width{1'b1}}; else q <= d; endmodule module vl_spr ( sp, r, q, clk, rst); //parameter width = 1; parameter reset_value = 1'b0; input sp, r; output reg q; input clk, rst; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (sp) q <= 1'b1; else if (r) q <= 1'b0; endmodule module vl_srp ( s, rp, q, clk, rst); parameter width = 1; parameter reset_value = 0; input s, rp; output reg q; input clk, rst; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (rp) q <= 1'b0; else if (s) q <= 1'b1; endmodule module vl_dff_sr ( aclr, aset, clock, data, q); input aclr; input aset; input clock; input data; output reg q; always @ (posedge clock or posedge aclr or posedge aset) if (aclr) q <= 1'b0; else if (aset) q <= 1'b1; else q <= data; endmodule // LATCH // For targtes not supporting LATCH use dff_sr with clk=1 and data=1 module vl_latch ( d, le, q, clk); input d, le; input clk; always @ (le or d) if (le) d <= q; endmodule module vl_shreg ( d, q, clk, rst); parameter depth = 10; input d; output q; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; endmodule module vl_shreg_ce ( d, ce, q, clk, rst); parameter depth = 10; input d, ce; output q; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else if (ce) dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; endmodule module vl_delay ( d, q, clk, rst); parameter depth = 10; input d; output q; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; endmodule module vl_delay_emptyflag ( d, q, emptyflag, clk, rst); parameter depth = 10; input d; output q, emptyflag; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; assign emptyflag = !(|dffs); endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Logic functions //// //// //// //// Description //// //// Logic functions such as multiplexers //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module vl_mux_andor ( a, sel, dout); parameter width = 32; parameter nr_of_ports = 4; input [nr_of_ports*width-1:0] a; input [nr_of_ports-1:0] sel; output reg [width-1:0] dout; integer i,j; always @ (a, sel) begin dout = a[width-1:0] & {width{sel[0]}}; for (i=1;i<nr_of_ports;i=i+1) for (j=0;j<width;j=j+1) dout[j] = (a[i*width + j] & sel[i]) | dout[j]; end endmodule module vl_mux2_andor ( a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 2; input [width-1:0] a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux3_andor ( a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 3; input [width-1:0] a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux4_andor ( a3, a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 4; input [width-1:0] a3, a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a3,a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux5_andor ( a4, a3, a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 5; input [width-1:0] a4, a3, a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a4,a3,a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux6_andor ( a5, a4, a3, a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 6; input [width-1:0] a5, a4, a3, a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a5,a4,a3,a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_parity_generate (data, parity); parameter word_size = 32; parameter chunk_size = 8; parameter parity_type = 1'b0; // 0 - even, 1 - odd parity input [word_size-1:0] data; output reg [word_size/chunk_size-1:0] parity; integer i,j; always @ (data) for (i=0;i<word_size/chunk_size;i=i+1) begin parity[i] = parity_type; for (j=0;j<chunk_size;j=j+1) begin parity[i] = data[i*chunk_size+j] ^ parity[i]; end end endmodule module vl_parity_check( data, parity, parity_error); parameter word_size = 32; parameter chunk_size = 8; parameter parity_type = 1'b0; // 0 - even, 1 - odd parity input [word_size-1:0] data; input [word_size/chunk_size-1:0] parity; output parity_error; reg [word_size/chunk_size-1:0] error_flag; integer i,j; always @ (data or parity) for (i=0;i<word_size/chunk_size;i=i+1) begin error_flag[i] = parity[i] ^ parity_type; for (j=0;j<chunk_size;j=j+1) begin error_flag[i] = data[i*chunk_size+j] ^ error_flag[i]; end end assign parity_error = |error_flag; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// IO functions //// //// //// //// Description //// //// IO functions such as IOB flip-flops //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `timescale 1ns/1ns module vl_o_dff (d_i, o_pad, clk, rst); parameter width = 1; parameter reset_value = {width{1'b0}}; input [width-1:0] d_i; output [width-1:0] o_pad; input clk, rst; wire [width-1:0] d_i_int /*synthesis syn_keep = 1*/; reg [width-1:0] o_pad_int; assign d_i_int = d_i; genvar i; generate for (i=0;i<width;i=i+1) begin always @ (posedge clk or posedge rst) if (rst) o_pad_int[i] <= reset_value[i]; else o_pad_int[i] <= d_i_int[i]; assign #1 o_pad[i] = o_pad_int[i]; end endgenerate endmodule `timescale 1ns/1ns module vl_io_dff_oe ( d_i, d_o, oe, io_pad, clk, rst); parameter width = 1; input [width-1:0] d_o; output reg [width-1:0] d_i; input oe; inout [width-1:0] io_pad; input clk, rst; wire [width-1:0] oe_d /*synthesis syn_keep = 1*/; reg [width-1:0] oe_q; reg [width-1:0] d_o_q; assign oe_d = {width{oe}}; genvar i; generate for (i=0;i<width;i=i+1) begin always @ (posedge clk or posedge rst) if (rst) oe_q[i] <= 1'b0; else oe_q[i] <= oe_d[i]; always @ (posedge clk or posedge rst) if (rst) d_o_q[i] <= 1'b0; else d_o_q[i] <= d_o[i]; always @ (posedge clk or posedge rst) if (rst) d_i[i] <= 1'b0; else d_i[i] <= io_pad[i]; assign #1 io_pad[i] = (oe_q[i]) ? d_o_q[i] : 1'bz; end endgenerate endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // binary counter module vl_cnt_bin_ce ( cke, q, rst, clk); parameter length = 4; input cke; output [length:1] q; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 0; parameter level1_value = 15; reg [length:1] qi; wire [length:1] q_next; assign q_next = qi + {{length-1{1'b0}},1'b1}; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; assign q = qi; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // binary counter module vl_cnt_bin_ce_rew_zq_l1 ( cke, rew, zq, level1, rst, clk); parameter length = 4; input cke; input rew; output reg zq; output reg level1; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 1; parameter level1_value = 15; wire clear; assign clear = 1'b0; reg [length:1] qi; wire [length:1] q_next, q_next_fw, q_next_rew; assign q_next_fw = qi + {{length-1{1'b0}},1'b1}; assign q_next_rew = qi - {{length-1{1'b0}},1'b1}; assign q_next = rew ? q_next_rew : q_next_fw; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; always @ (posedge clk or posedge rst) if (rst) zq <= 1'b1; else if (cke) zq <= q_next == {length{1'b0}}; always @ (posedge clk or posedge rst) if (rst) level1 <= 1'b0; else if (cke) if (clear) level1 <= 1'b0; else if (q_next == level1_value) level1 <= 1'b1; else if (qi == level1_value & rew) level1 <= 1'b0; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // binary counter module vl_cnt_bin_ce_rew_q_zq_l1 ( cke, rew, q, zq, level1, rst, clk); parameter length = 4; input cke; input rew; output [length:1] q; output reg zq; output reg level1; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 1; parameter level1_value = 15; wire clear; assign clear = 1'b0; reg [length:1] qi; wire [length:1] q_next, q_next_fw, q_next_rew; assign q_next_fw = qi + {{length-1{1'b0}},1'b1}; assign q_next_rew = qi - {{length-1{1'b0}},1'b1}; assign q_next = rew ? q_next_rew : q_next_fw; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; assign q = qi; always @ (posedge clk or posedge rst) if (rst) zq <= 1'b1; else if (cke) zq <= q_next == {length{1'b0}}; always @ (posedge clk or posedge rst) if (rst) level1 <= 1'b0; else if (cke) if (clear) level1 <= 1'b0; else if (q_next == level1_value) level1 <= 1'b1; else if (qi == level1_value & rew) level1 <= 1'b0; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // LFSR counter module vl_cnt_lfsr_ce ( cke, zq, rst, clk); parameter length = 4; input cke; output reg zq; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 0; parameter level1_value = 15; reg [length:1] qi; reg lfsr_fb; wire [length:1] q_next; reg [32:1] polynom; integer i; always @ (qi) begin case (length) 2: polynom = 32'b11; // 0x3 3: polynom = 32'b110; // 0x6 4: polynom = 32'b1100; // 0xC 5: polynom = 32'b10100; // 0x14 6: polynom = 32'b110000; // 0x30 7: polynom = 32'b1100000; // 0x60 8: polynom = 32'b10111000; // 0xb8 9: polynom = 32'b100010000; // 0x110 10: polynom = 32'b1001000000; // 0x240 11: polynom = 32'b10100000000; // 0x500 12: polynom = 32'b100000101001; // 0x829 13: polynom = 32'b1000000001100; // 0x100C 14: polynom = 32'b10000000010101; // 0x2015 15: polynom = 32'b110000000000000; // 0x6000 16: polynom = 32'b1101000000001000; // 0xD008 17: polynom = 32'b10010000000000000; // 0x12000 18: polynom = 32'b100000010000000000; // 0x20400 19: polynom = 32'b1000000000000100011; // 0x40023 20: polynom = 32'b10010000000000000000; // 0x90000 21: polynom = 32'b101000000000000000000; // 0x140000 22: polynom = 32'b1100000000000000000000; // 0x300000 23: polynom = 32'b10000100000000000000000; // 0x420000 24: polynom = 32'b111000010000000000000000; // 0xE10000 25: polynom = 32'b1001000000000000000000000; // 0x1200000 26: polynom = 32'b10000000000000000000100011; // 0x2000023 27: polynom = 32'b100000000000000000000010011; // 0x4000013 28: polynom = 32'b1100100000000000000000000000; // 0xC800000 29: polynom = 32'b10100000000000000000000000000; // 0x14000000 30: polynom = 32'b100000000000000000000000101001; // 0x20000029 31: polynom = 32'b1001000000000000000000000000000; // 0x48000000 32: polynom = 32'b10000000001000000000000000000011; // 0x80200003 default: polynom = 32'b0; endcase lfsr_fb = qi[length]; for (i=length-1; i>=1; i=i-1) begin if (polynom[i]) lfsr_fb = lfsr_fb ~^ qi[i]; end end assign q_next = (qi == wrap_value) ? {length{1'b0}} :{qi[length-1:1],lfsr_fb}; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; always @ (posedge clk or posedge rst) if (rst) zq <= 1'b1; else if (cke) zq <= q_next == {length{1'b0}}; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // GRAY counter module vl_cnt_gray_ce_bin ( cke, q, q_bin, rst, clk); parameter length = 4; input cke; output reg [length:1] q; output [length:1] q_bin; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 8; parameter level1_value = 15; reg [length:1] qi; wire [length:1] q_next; assign q_next = qi + {{length-1{1'b0}},1'b1}; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; always @ (posedge clk or posedge rst) if (rst) q <= {length{1'b0}}; else if (cke) q <= (q_next>>1) ^ q_next; assign q_bin = qi; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, counters //// //// //// //// Description //// //// counters //// //// //// //// //// //// To Do: //// //// - add more counters //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module vl_cnt_shreg_wrap ( q, rst, clk); parameter length = 4; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else q <= {q[length-1],q[0:length-2]}; endmodule module vl_cnt_shreg_ce_wrap ( cke, q, rst, clk); parameter length = 4; input cke; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (cke) q <= {q[length-1],q[0:length-2]}; endmodule module vl_cnt_shreg_ce_clear ( cke, clear, q, rst, clk); parameter length = 4; input cke, clear; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (cke) if (clear) q <= {1'b1,{length-1{1'b0}}}; else q <= q >> 1; endmodule module vl_cnt_shreg_ce_clear_wrap ( cke, clear, q, rst, clk); parameter length = 4; input cke, clear; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (cke) if (clear) q <= {1'b1,{length-1{1'b0}}}; else q <= {q[length-1],q[0:length-2]}; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, memories //// //// //// //// Description //// //// memories //// //// //// //// //// //// To Do: //// //// - add more memory types //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// /// ROM module vl_rom_init ( adr, q, clk); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(addr_width-1):0] adr; output reg [(data_width-1):0] q; input clk; reg [data_width-1:0] rom [mem_size-1:0]; parameter memory_file = "vl_rom.vmem"; initial begin $readmemh(memory_file, rom); end always @ (posedge clk) q <= rom[adr]; endmodule // Single port RAM module vl_ram ( d, adr, we, q, clk); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d; input [(addr_width-1):0] adr; input we; output reg [(data_width-1):0] q; input clk; reg [data_width-1:0] ram [mem_szie-1:0]; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk) begin if (we) ram[adr] <= d; q <= ram[adr]; end endmodule module vl_ram_be ( d, adr, be, we, q, clk); parameter data_width = 32; parameter addr_width = 6; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d; input [(addr_width-1):0] adr; input [(data_width/8)-1:0] be; input we; output reg [(data_width-1):0] q; input clk; `ifdef SYSTEMVERILOG logic [data_width/8-1:0][7:0] ram[0:mem_size-1];// # words = 1 << address width `else reg [data_width-1:0] ram [mem_size-1:0]; `endif parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; generate if (memory_init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate `ifdef SYSTEMVERILOG // use a multi-dimensional packed array //to model individual bytes within the word always_ff@(posedge clk) begin if(we) begin // note: we should have a for statement to support any bus width if(be[3]) ram[adr[addr_width-2:0]][3] <= d[31:24]; if(be[2]) ram[adr[addr_width-2:0]][2] <= d[23:16]; if(be[1]) ram[adr[addr_width-2:0]][1] <= d[15:8]; if(be[0]) ram[adr[addr_width-2:0]][0] <= d[7:0]; end q <= ram[adr]; end `else genvar i; generate for (i=0;i<addr_width/4;i=i+1) begin : be_ram always @ (posedge clk) if (we & be[i]) ram[adr][(i+1)*8-1:i*8] <= d[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk) q <= ram[adr]; `endif endmodule // ACTEL FPGA should not use logic to handle rw collision module vl_dpram_1r1w ( d_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; input clk_a, clk_b; reg [(addr_width-1):0] adr_b_reg; reg [data_width-1:0] ram [mem_szie-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk_a) if (we_a) ram[adr_a] <= d_a; always @ (posedge clk_b) adr_b_reg <= adr_b; assign q_b = ram[adr_b_reg]; endmodule module vl_dpram_2r1w ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; output reg [(data_width-1):0] q_a; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [mem_szie-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) q_b <= ram[adr_b]; endmodule module vl_dpram_2r2w ( d_a, q_a, adr_a, we_a, clk_a, d_b, q_b, adr_b, we_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; input [(data_width-1):0] d_b; output reg [(data_width-1):0] q_a; input we_b; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [mem_size-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter init = 0; parameter memory_file = "vl_ram.vmem"; generate if (init) begin : init_mem initial begin $readmemh(memory_file, ram); end end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) begin q_b <= ram[adr_b]; if (we_b) ram[adr_b] <= d_b; end endmodule module vl_dpram_be_2r2w ( d_a, q_a, adr_a, be_a, we_a, clk_a, d_b, q_b, adr_b, be_b, we_b, clk_b ); parameter a_data_width = 32; parameter a_addr_width = 8; parameter b_data_width = 64; parameter b_addr_width = 7; //parameter mem_size = (a_addr_width>b_addr_width) ? (1<<a_addr_width) : (1<<b_addr_width); parameter mem_size = 1024; input [(a_data_width-1):0] d_a; input [(a_addr_width-1):0] adr_a; input [(b_addr_width-1):0] adr_b; input [(a_data_width/4-1):0] be_a; input we_a; output [(b_data_width-1):0] q_b; input [(b_data_width-1):0] d_b; output reg [(a_data_width-1):0] q_a; input [(b_data_width/4-1):0] be_b; input we_b; input clk_a, clk_b; reg [(b_data_width-1):0] q_b; generate if (a_data_width==32 & b_data_width==64) begin : inst32to64 wire [63:0] tmp; vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram0 ( .d_a(d_a[7:0]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a & be_a[0] & !adr_a[0]), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram1 ( .d_a(d_a[7:0]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram2 ( .d_a(d_a[15:8]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram3 ( .d_a(d_a[15:8]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram4 ( .d_a(d_a[23:16]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram5 ( .d_a(d_a[23:16]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram6 ( .d_a(d_a[31:24]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); vl_dpram_2r2w # (.data_width(8), .addr_width(b_addr_width-3)) ram7 ( .d_a(d_a[31:24]), .q_a(tmp[7:0]), .adr_a(adr_a[a_addr_width-3-1:0]), .we_a(we_a), .clk_a(clk_a), .d_b(d_b[7:0]), .q_b(q_b[7:0]), .adr_b(adr_b[b_addr_width-3-1:0]), .we_b(we_b), .clk_b(clk_b) ); /* reg [7:0] ram0 [mem_size/8-1:0]; wire [7:0] wea, web; assign wea = we_a & be_a[0]; assign web = we_b & be_b[0]; always @ (posedge clk_a) if (wea) ram0[adr_a] <= d_a[7:0]; always @ (posedge clk_a) q_a[7:0] <= ram0[adr_a]; always @ (posedge clk_a) if (web) ram0[adr_b] <= d_b[7:0]; always @ (posedge clk_b) q_b[7:0] <= ram0[adr_b]; */ end endgenerate /* generate for (i=0;i<addr_width/4;i=i+1) begin : be_rama always @ (posedge clk_a) if (we_a & be_a[i]) ram[adr_a][(i+1)*8-1:i*8] <= d_a[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk_a) q_a <= ram[adr_a]; genvar i; generate for (i=0;i<addr_width/4;i=i+1) begin : be_ramb always @ (posedge clk_a) if (we_b & be_b[i]) ram[adr_b][(i+1)*8-1:i*8] <= d_b[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk_b) q_b <= ram[adr_b]; */ /* always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) begin q_b <= ram[adr_b]; if (we_b) ram[adr_b] <= d_b; end */ endmodule // Content addresable memory, CAM // FIFO module vl_fifo_1r1w_fill_level_sync ( d, wr, fifo_full, q, rd, fifo_empty, fill_level, clk, rst ); parameter data_width = 18; parameter addr_width = 4; // write side input [data_width-1:0] d; input wr; output fifo_full; // read side output [data_width-1:0] q; input rd; output fifo_empty; // common output [addr_width:0] fill_level; input rst, clk; wire [addr_width:1] wadr, radr; vl_cnt_bin_ce # ( .length(addr_width)) fifo_wr_adr( .cke(wr), .q(wadr), .rst(rst), .clk(clk)); vl_cnt_bin_ce # (.length(addr_width)) fifo_rd_adr( .cke(rd), .q(radr), .rst(rst), .clk(clk)); vl_dpram_1r1w # (.data_width(data_width), .addr_width(addr_width)) dpram ( .d_a(d), .adr_a(wadr), .we_a(wr), .clk_a(clk), .q_b(q), .adr_b(radr), .clk_b(clk)); vl_cnt_bin_ce_rew_q_zq_l1 # (.length(addr_width+1), .level1_value(1<<addr_width)) fill_level_cnt( .cke(rd ^ wr), .rew(rd), .q(fill_level), .zq(fifo_empty), .level1(fifo_full), .rst(rst), .clk(clk)); endmodule // Intended use is two small FIFOs (RX and TX typically) in one FPGA RAM resource // RAM is supposed to be larger than the two FIFOs // LFSR counters used adr pointers module vl_fifo_2r2w_sync_simplex ( // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_fill_level, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_fill_level, // common clk, rst ); parameter data_width = 8; parameter addr_width = 5; parameter fifo_full_level = (1<<addr_width)-1; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; output [addr_width-1:0] a_fill_level; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; output [addr_width-1:0] b_fill_level; input clk; input rst; // adr_gen wire [addr_width:1] a_wadr, a_radr; wire [addr_width:1] b_wadr, b_radr; // dpram wire [addr_width:0] a_dpram_adr, b_dpram_adr; vl_cnt_lfsr_ce # ( .length(addr_width)) fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .rst(rst), .clk(clk)); vl_cnt_lfsr_ce # (.length(addr_width)) fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .rst(rst), .clk(clk)); vl_cnt_lfsr_ce # ( .length(addr_width)) fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .rst(rst), .clk(clk)); vl_cnt_lfsr_ce # (.length(addr_width)) fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .rst(rst), .clk(clk)); // mux read or write adr to DPRAM assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr} : {1'b1,a_radr}; assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr} : {1'b0,b_radr}; vl_dpram_2r2w # (.data_width(data_width), .addr_width(addr_width+1)) dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk), .d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk)); vl_cnt_bin_ce_rew_zq_l1 # (.length(addr_width), .level1_value(fifo_full_level)) a_fill_level_cnt( .cke(a_rd ^ a_wr), .rew(a_rd), .q(a_fill_level), .zq(a_fifo_empty), .level1(a_fifo_full), .rst(rst), .clk(clk)); vl_cnt_bin_ce_rew_zq_l1 # (.length(addr_width), .level1_value(fifo_full_level)) b_fill_level_cnt( .cke(b_rd ^ b_wr), .rew(b_rd), .q(b_fill_level), .zq(b_fifo_empty), .level1(b_fifo_full), .rst(rst), .clk(clk)); endmodule module vl_fifo_cmp_async ( wptr, rptr, fifo_empty, fifo_full, wclk, rclk, rst ); parameter addr_width = 4; parameter N = addr_width-1; parameter Q1 = 2'b00; parameter Q2 = 2'b01; parameter Q3 = 2'b11; parameter Q4 = 2'b10; parameter going_empty = 1'b0; parameter going_full = 1'b1; input [N:0] wptr, rptr; output fifo_empty; output fifo_full; input wclk, rclk, rst; wire direction; reg direction_set, direction_clr; wire async_empty, async_full; wire fifo_full2; wire fifo_empty2; // direction_set always @ (wptr[N:N-1] or rptr[N:N-1]) case ({wptr[N:N-1],rptr[N:N-1]}) {Q1,Q2} : direction_set <= 1'b1; {Q2,Q3} : direction_set <= 1'b1; {Q3,Q4} : direction_set <= 1'b1; {Q4,Q1} : direction_set <= 1'b1; default : direction_set <= 1'b0; endcase // direction_clear always @ (wptr[N:N-1] or rptr[N:N-1] or rst) if (rst) direction_clr <= 1'b1; else case ({wptr[N:N-1],rptr[N:N-1]}) {Q2,Q1} : direction_clr <= 1'b1; {Q3,Q2} : direction_clr <= 1'b1; {Q4,Q3} : direction_clr <= 1'b1; {Q1,Q4} : direction_clr <= 1'b1; default : direction_clr <= 1'b0; endcase vl_dff_sr dff_sr_dir( .aclr(direction_clr), .aset(direction_set), .clock(1'b1), .data(1'b1), .q(direction)); assign async_empty = (wptr == rptr) && (direction==going_empty); assign async_full = (wptr == rptr) && (direction==going_full); vl_dff_sr dff_sr_empty0( .aclr(rst), .aset(async_full), .clock(wclk), .data(async_full), .q(fifo_full2)); vl_dff_sr dff_sr_empty1( .aclr(rst), .aset(async_full), .clock(wclk), .data(fifo_full2), .q(fifo_full)); /* always @ (posedge wclk or posedge rst or posedge async_full) if (rst) {fifo_full, fifo_full2} <= 2'b00; else if (async_full) {fifo_full, fifo_full2} <= 2'b11; else {fifo_full, fifo_full2} <= {fifo_full2, async_full}; */ /* always @ (posedge rclk or posedge async_empty) if (async_empty) {fifo_empty, fifo_empty2} <= 2'b11; else {fifo_empty,fifo_empty2} <= {fifo_empty2,async_empty}; */ vl_dff # ( .reset_value(1'b1)) dff0 ( .d(async_empty), .q(fifo_empty2), .clk(rclk), .rst(async_empty)); vl_dff # ( .reset_value(1'b1)) dff1 ( .d(fifo_empty2), .q(fifo_empty), .clk(rclk), .rst(async_empty)); endmodule // async_compb module vl_fifo_1r1w_async ( d, wr, fifo_full, wr_clk, wr_rst, q, rd, fifo_empty, rd_clk, rd_rst ); parameter data_width = 18; parameter addr_width = 4; // write side input [data_width-1:0] d; input wr; output fifo_full; input wr_clk; input wr_rst; // read side output [data_width-1:0] q; input rd; output fifo_empty; input rd_clk; input rd_rst; wire [addr_width:1] wadr, wadr_bin, radr, radr_bin; vl_cnt_gray_ce_bin # ( .length(addr_width)) fifo_wr_adr( .cke(wr), .q(wadr), .q_bin(wadr_bin), .rst(wr_rst), .clk(wr_clk)); vl_cnt_gray_ce_bin # (.length(addr_width)) fifo_rd_adr( .cke(rd), .q(radr), .q_bin(radr_bin), .rst(rd_rst), .clk(rd_clk)); vl_dpram_1r1w # (.data_width(data_width), .addr_width(addr_width)) dpram ( .d_a(d), .adr_a(wadr_bin), .we_a(wr), .clk_a(wr_clk), .q_b(q), .adr_b(radr_bin), .clk_b(rd_clk)); vl_fifo_cmp_async # (.addr_width(addr_width)) cmp ( .wptr(wadr), .rptr(radr), .fifo_empty(fifo_empty), .fifo_full(fifo_full), .wclk(wr_clk), .rclk(rd_clk), .rst(wr_rst) ); endmodule module vl_fifo_2r2w_async ( // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_clk, a_rst, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_clk, b_rst ); parameter data_width = 18; parameter addr_width = 4; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; input a_clk; input a_rst; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; input b_clk; input b_rst; vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width)) vl_fifo_1r1w_async_a ( .d(a_d), .wr(a_wr), .fifo_full(a_fifo_full), .wr_clk(a_clk), .wr_rst(a_rst), .q(b_q), .rd(b_rd), .fifo_empty(b_fifo_empty), .rd_clk(b_clk), .rd_rst(b_rst) ); vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width)) vl_fifo_1r1w_async_b ( .d(b_d), .wr(b_wr), .fifo_full(b_fifo_full), .wr_clk(b_clk), .wr_rst(b_rst), .q(a_q), .rd(a_rd), .fifo_empty(a_fifo_empty), .rd_clk(a_clk), .rd_rst(a_rst) ); endmodule module vl_fifo_2r2w_async_simplex ( // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_clk, a_rst, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_clk, b_rst ); parameter data_width = 18; parameter addr_width = 4; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; input a_clk; input a_rst; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; input b_clk; input b_rst; // adr_gen wire [addr_width:1] a_wadr, a_wadr_bin, a_radr, a_radr_bin; wire [addr_width:1] b_wadr, b_wadr_bin, b_radr, b_radr_bin; // dpram wire [addr_width:0] a_dpram_adr, b_dpram_adr; vl_cnt_gray_ce_bin # ( .length(addr_width)) fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .q_bin(a_wadr_bin), .rst(a_rst), .clk(a_clk)); vl_cnt_gray_ce_bin # (.length(addr_width)) fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .q_bin(a_radr_bin), .rst(a_rst), .clk(a_clk)); vl_cnt_gray_ce_bin # ( .length(addr_width)) fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .q_bin(b_wadr_bin), .rst(b_rst), .clk(b_clk)); vl_cnt_gray_ce_bin # (.length(addr_width)) fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .q_bin(b_radr_bin), .rst(b_rst), .clk(b_clk)); // mux read or write adr to DPRAM assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr_bin} : {1'b1,a_radr_bin}; assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr_bin} : {1'b0,b_radr_bin}; vl_dpram_2r2w # (.data_width(data_width), .addr_width(addr_width+1)) dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk), .d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk)); vl_fifo_cmp_async # (.addr_width(addr_width)) cmp1 ( .wptr(a_wadr), .rptr(b_radr), .fifo_empty(b_fifo_empty), .fifo_full(a_fifo_full), .wclk(a_clk), .rclk(b_clk), .rst(a_rst) ); vl_fifo_cmp_async # (.addr_width(addr_width)) cmp2 ( .wptr(b_wadr), .rptr(a_radr), .fifo_empty(a_fifo_empty), .fifo_full(b_fifo_full), .wclk(b_clk), .rclk(a_clk), .rst(b_rst) ); endmodule module vl_reg_file ( a1, a2, a3, wd3, we3, rd1, rd2, clk ); parameter data_width = 32; parameter addr_width = 5; input [addr_width-1:0] a1, a2, a3; input [data_width-1:0] wd3; input we3; output [data_width-1:0] rd1, rd2; input clk; reg [data_width-1:0] wd3_reg; reg [addr_width-1:0] a1_reg, a2_reg, a3_reg; reg we3_reg; reg [data_width-1:0] ram1 [(1<<addr_width)-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; reg [data_width-1:0] ram2 [(1<<addr_width)-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; always @ (posedge clk or posedge rst) if (rst) {wd3_reg, a3_reg, we3_reg} <= {(data_width+addr_width+1){1'b0}}; else {wd3_reg, a3_reg, we3_reg} <= {wd3,a3,wd3}; always @ (negedge clk) if (we3_reg) ram1[a3_reg] <= wd3; always @ (posedge clk) a1_reg <= a1; assign rd1 = ram1[a1_reg]; always @ (negedge clk) if (we3_reg) ram2[a3_reg] <= wd3; always @ (posedge clk) a2_reg <= a2; assign rd2 = ram2[a2_reg]; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, wishbone stuff //// //// //// //// Description //// //// Wishbone compliant modules //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // async wb3 - wb3 bridge `timescale 1ns/1ns module vl_wb3wb3_bridge ( // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_clk, wbs_rst, // wishbone master side wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_bte_o, wbm_cti_o, wbm_we_o, wbm_cyc_o, wbm_stb_o, wbm_dat_i, wbm_ack_i, wbm_clk, wbm_rst); input [31:0] wbs_dat_i; input [31:2] wbs_adr_i; input [3:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i, wbs_cyc_i, wbs_stb_i; output [31:0] wbs_dat_o; output wbs_ack_o; input wbs_clk, wbs_rst; output [31:0] wbm_dat_o; output reg [31:2] wbm_adr_o; output [3:0] wbm_sel_o; output reg [1:0] wbm_bte_o; output reg [2:0] wbm_cti_o; output reg wbm_we_o; output wbm_cyc_o; output wbm_stb_o; input [31:0] wbm_dat_i; input wbm_ack_i; input wbm_clk, wbm_rst; parameter addr_width = 4; // bte parameter linear = 2'b00; parameter wrap4 = 2'b01; parameter wrap8 = 2'b10; parameter wrap16 = 2'b11; // cti parameter classic = 3'b000; parameter incburst = 3'b010; parameter endofburst = 3'b111; parameter wbs_adr = 1'b0; parameter wbs_data = 1'b1; parameter wbm_adr0 = 2'b00; parameter wbm_adr1 = 2'b01; parameter wbm_data = 2'b10; parameter wbm_data_wait = 2'b11; reg [1:0] wbs_bte_reg; reg wbs; wire wbs_eoc_alert, wbm_eoc_alert; reg wbs_eoc, wbm_eoc; reg [1:0] wbm; wire [1:16] wbs_count, wbm_count; wire [35:0] a_d, a_q, b_d, b_q; wire a_wr, a_rd, a_fifo_full, a_fifo_empty, b_wr, b_rd, b_fifo_full, b_fifo_empty; reg a_rd_reg; wire b_rd_adr, b_rd_data; wire b_rd_data_reg; wire [35:0] temp; assign wbs_eoc_alert = (wbs_bte_reg==wrap4 & wbs_count[3]) | (wbs_bte_reg==wrap8 & wbs_count[7]) | (wbs_bte_reg==wrap16 & wbs_count[15]); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs_eoc <= 1'b0; else if (wbs==wbs_adr & wbs_stb_i & !a_fifo_full) wbs_eoc <= (wbs_bte_i==linear) | (wbs_cti_==3'b111); else if (wbs_eoc_alert & (a_rd | a_wr)) wbs_eoc <= 1'b1; vl_cnt_shreg_ce_clear # ( .length(16)) cnt0 ( .cke(wbs_ack_o), .clear(wbs_eoc), .q(wbs_count), .rst(wbs_rst), .clk(wbs_clk)); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs <= wbs_adr; else if ((wbs==wbs_adr) & wbs_cyc_i & wbs_stb_i & a_fifo_empty) wbs <= wbs_data; else if (wbs_eoc & wbs_ack_o) wbs <= wbs_adr; // wbs FIFO assign a_d = (wbs==wbs_adr) ? {wbs_adr_i[31:2],wbs_we_i,((wbs_cti_i==3'b111) ? {2'b00,3'b000} : {wbs_bte_i,wbs_cti_i})} : {wbs_dat_i,wbs_sel_i}; assign a_wr = (wbs==wbs_adr) ? wbs_cyc_i & wbs_stb_i & a_fifo_empty : (wbs==wbs_data) ? wbs_we_i & wbs_stb_i & !a_fifo_full : 1'b0; assign a_rd = !a_fifo_empty; always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) a_rd_reg <= 1'b0; else a_rd_reg <= a_rd; assign wbs_ack_o = a_rd_reg | (a_wr & wbs==wbs_data); assign wbs_dat_o = a_q[35:4]; always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs_bte_reg <= 2'b00; else wbs_bte_reg <= wbs_bte_i; // wbm FIFO assign wbm_eoc_alert = (wbm_bte_o==wrap4 & wbm_count[3]) | (wbm_bte_o==wrap8 & wbm_count[7]) | (wbm_bte_o==wrap16 & wbm_count[15]); always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) wbm_eoc <= 1'b0; else if (wbm==wbm_adr0 & !b_fifo_empty) wbm_eoc <= b_q[4:3] == linear; else if (wbm_eoc_alert & wbm_ack_i) wbm_eoc <= 1'b1; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) wbm <= wbm_adr0; else /* if ((wbm==wbm_adr0 & !b_fifo_empty) | (wbm==wbm_adr1 & !b_fifo_empty & wbm_we_o) | (wbm==wbm_adr1 & !wbm_we_o) | (wbm==wbm_data & wbm_ack_i & wbm_eoc)) wbm <= {wbm[0],!(wbm[1] ^ wbm[0])}; // count sequence 00,01,10 */ case (wbm) wbm_adr0: if (!b_fifo_empty) wbm <= wbm_adr1; wbm_adr1: if (!wbm_we_o | (!b_fifo_empty & wbm_we_o)) wbm <= wbm_data; wbm_data: if (wbm_ack_i & wbm_eoc) wbm <= wbm_adr0; else if (b_fifo_empty & wbm_we_o & wbm_ack_i) wbm <= wbm_data_wait; wbm_data_wait: if (!b_fifo_empty) wbm <= wbm_data; endcase assign b_d = {wbm_dat_i,4'b1111}; assign b_wr = !wbm_we_o & wbm_ack_i; assign b_rd_adr = (wbm==wbm_adr0 & !b_fifo_empty); assign b_rd_data = (wbm==wbm_adr1 & !b_fifo_empty & wbm_we_o) ? 1'b1 : // b_q[`WE] (wbm==wbm_data & !b_fifo_empty & wbm_we_o & wbm_ack_i & !wbm_eoc) ? 1'b1 : (wbm==wbm_data_wait & !b_fifo_empty) ? 1'b1 : 1'b0; assign b_rd = b_rd_adr | b_rd_data; vl_dff dff1 ( .d(b_rd_data), .q(b_rd_data_reg), .clk(wbm_clk), .rst(wbm_rst)); vl_dff_ce # ( .width(36)) dff2 ( .d(b_q), .ce(b_rd_data_reg), .q(temp), .clk(wbm_clk), .rst(wbm_rst)); assign {wbm_dat_o,wbm_sel_o} = (b_rd_data_reg) ? b_q : temp; vl_cnt_shreg_ce_clear # ( .length(16)) cnt1 ( .cke(wbm_ack_i), .clear(wbm_eoc), .q(wbm_count), .rst(wbm_rst), .clk(wbm_clk)); assign wbm_cyc_o = (wbm==wbm_data | wbm==wbm_data_wait); assign wbm_stb_o = (wbm==wbm_data); always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) {wbm_adr_o,wbm_we_o,wbm_bte_o,wbm_cti_o} <= {30'h0,1'b0,linear,classic}; else begin if (wbm==wbm_adr0 & !b_fifo_empty) {wbm_adr_o,wbm_we_o,wbm_bte_o,wbm_cti_o} <= b_q; else if (wbm_eoc_alert & wbm_ack_i) wbm_cti_o <= endofburst; end //async_fifo_dw_simplex_top vl_fifo_2r2w_async_simplex # ( .data_width(36), .addr_width(addr_width)) fifo ( // a side .a_d(a_d), .a_wr(a_wr), .a_fifo_full(a_fifo_full), .a_q(a_q), .a_rd(a_rd), .a_fifo_empty(a_fifo_empty), .a_clk(wbs_clk), .a_rst(wbs_rst), // b side .b_d(b_d), .b_wr(b_wr), .b_fifo_full(b_fifo_full), .b_q(b_q), .b_rd(b_rd), .b_fifo_empty(b_fifo_empty), .b_clk(wbm_clk), .b_rst(wbm_rst) ); endmodule module vl_wb3avalon_bridge ( // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_clk, wbs_rst, // avalon master side readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, clk, rst); input [31:0] wbs_dat_i; input [31:2] wbs_adr_i; input [3:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i, wbs_cyc_i, wbs_stb_i; output [31:0] wbs_dat_o; output wbs_ack_o; input wbs_clk, wbs_rst; input [31:0] readdata; output [31:0] writedata; output [31:2] address; output [3:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input readdatavalid; input waitrequest; input clk; input rst; wire [1:0] wbm_bte_o; wire [2:0] wbm_cti_o; wire wbm_we_o, wbm_cyc_o, wbm_stb_o, wbm_ack_i; reg last_cyc; always @ (posedge clk or posedge rst) if (rst) last_cyc <= 1'b0; else last_cyc <= wbm_cyc_o; assign beginbursttransfer = (!last_cyc & wbm_cyc_o) & wbm_cti_o==3'b010; assign burstcount = (wbm_bte_o==2'b01) ? 4'd4 : (wbm_bte_o==2'b10) ? 4'd8 : 4'd16; assign write = wbm_cyc_o & wbm_stb_o & wbm_we_o; assign read = wbm_cyc_o & wbm_stb_o & !wbm_we_o; assign wbm_ack_i = (readdatavalid & !waitrequest) | (write & !waitrequest); vl_wb3wb3_bridge wbwb3inst ( // wishbone slave side .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i), .wbs_sel_i(wbs_sel_i), .wbs_bte_i(wbs_bte_i), .wbs_cti_i(wbs_cti_i), .wbs_we_i(wbs_we_i), .wbs_cyc_i(wbs_cyc_i), .wbs_stb_i(wbs_stb_i), .wbs_dat_o(wbs_dat_o), .wbs_ack_o(wbs_ack_o), .wbs_clk(wbs_clk), .wbs_rst(wbs_rst), // wishbone master side .wbm_dat_o(writedata), .wbm_adr_o(adress), .wbm_sel_o(be), .wbm_bte_o(wbm_bte_o), .wbm_cti_o(wbm_cti_o), .wbm_we_o(wbm_we_o), .wbm_cyc_o(wbm_cyc_o), .wbm_stb_o(wbm_stb_o), .wbm_dat_i(readdata), .wbm_ack_i(wbm_ack_i), .wbm_clk(clk), .wbm_rst(rst)); endmodule module vl_wb3_arbiter_type1 ( wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_cti_o, wbm_bte_o, wbm_we_o, wbm_stb_o, wbm_cyc_o, wbm_dat_i, wbm_ack_i, wbm_err_i, wbm_rty_i, wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_cti_i, wbs_bte_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_err_o, wbs_rty_o, wb_clk, wb_rst ); parameter nr_of_ports = 3; parameter adr_size = 26; parameter adr_lo = 2; parameter dat_size = 32; parameter sel_size = dat_size/8; localparam aw = (adr_size - adr_lo) * nr_of_ports; localparam dw = dat_size * nr_of_ports; localparam sw = sel_size * nr_of_ports; localparam cw = 3 * nr_of_ports; localparam bw = 2 * nr_of_ports; input [dw-1:0] wbm_dat_o; input [aw-1:0] wbm_adr_o; input [sw-1:0] wbm_sel_o; input [cw-1:0] wbm_cti_o; input [bw-1:0] wbm_bte_o; input [nr_of_ports-1:0] wbm_we_o, wbm_stb_o, wbm_cyc_o; output [dw-1:0] wbm_dat_i; output [nr_of_ports-1:0] wbm_ack_i, wbm_err_i, wbm_rty_i; output [dat_size-1:0] wbs_dat_i; output [adr_size-1:adr_lo] wbs_adr_i; output [sel_size-1:0] wbs_sel_i; output [2:0] wbs_cti_i; output [1:0] wbs_bte_i; output wbs_we_i, wbs_stb_i, wbs_cyc_i; input [dat_size-1:0] wbs_dat_o; input wbs_ack_o, wbs_err_o, wbs_rty_o; input wb_clk, wb_rst; reg [nr_of_ports-1:0] select; wire [nr_of_ports-1:0] state; wire [nr_of_ports-1:0] eoc; // end-of-cycle wire [nr_of_ports-1:0] sel; wire idle; genvar i; assign idle = !(|state); generate if (nr_of_ports == 2) begin wire [2:0] wbm1_cti_o, wbm0_cti_o; assign {wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[1],!wbm_cyc_o[1] & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 2'b1x : select = 2'b10; 2'b01 : select = 2'b01; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 3) begin wire [2:0] wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 3'b1xx : select = 3'b100; 3'b01x : select = 3'b010; 3'b001 : select = 3'b001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; // assign select = (idle) ? {wbm_cyc_o[2],!wbm_cyc_o[2] & wbm_cyc_o[1],wbm_cyc_o[2:1]==2'b00 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 4) begin wire [2:0] wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 4'b1xxx : select = 4'b1000; 4'b01xx : select = 4'b0100; 4'b001x : select = 4'b0010; 4'b0001 : select = 4'b0001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 5) begin wire [2:0] wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 5'b1xxxx : select = 5'b10000; 5'b01xxx : select = 5'b01000; 5'b001xx : select = 5'b00100; 5'b0001x : select = 5'b00010; 5'b00001 : select = 5'b00001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 6) begin wire [2:0] wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 6'b1xxxxx : select = 6'b100000; 6'b01xxxx : select = 6'b010000; 6'b001xxx : select = 6'b001000; 6'b0001xx : select = 6'b000100; 6'b00001x : select = 6'b000010; 6'b000001 : select = 6'b000001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[5] = (wbm_ack_i[5] & (wbm5_cti_o == 3'b000 | wbm5_cti_o == 3'b111)) | !wbm_cyc_o[5]; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 7) begin wire [2:0] wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 7'b1xxxxxx : select = 7'b1000000; 7'b01xxxxx : select = 7'b0100000; 7'b001xxxx : select = 7'b0010000; 7'b0001xxx : select = 7'b0001000; 7'b00001xx : select = 7'b0000100; 7'b000001x : select = 7'b0000010; 7'b0000001 : select = 7'b0000001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[6] = (wbm_ack_i[6] & (wbm6_cti_o == 3'b000 | wbm6_cti_o == 3'b111)) | !wbm_cyc_o[6]; assign eoc[5] = (wbm_ack_i[5] & (wbm5_cti_o == 3'b000 | wbm5_cti_o == 3'b111)) | !wbm_cyc_o[5]; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 8) begin wire [2:0] wbm7_cti_o, wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm7_cti_o, wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 8'b1xxxxxxx : select = 8'b10000000; 8'b01xxxxxx : select = 8'b01000000; 8'b001xxxxx : select = 8'b00100000; 8'b0001xxxx : select = 8'b00010000; 8'b00001xxx : select = 8'b00001000; 8'b000001xx : select = 8'b00000100; 8'b0000001x : select = 8'b00000010; 8'b00000001 : select = 8'b00000001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[7] = (wbm_ack_i[7] & (wbm7_cti_o == 3'b000 | wbm7_cti_o == 3'b111)) | !wbm_cyc_o[7]; assign eoc[6] = (wbm_ack_i[6] & (wbm6_cti_o == 3'b000 | wbm6_cti_o == 3'b111)) | !wbm_cyc_o[6]; assign eoc[5] = (wbm_ack_i[5] & (wbm5_cti_o == 3'b000 | wbm5_cti_o == 3'b111)) | !wbm_cyc_o[5]; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate for (i=0;i<nr_of_ports;i=i+1) begin : spr0 vl_spr sr0( .sp(select[i]), .r(eoc[i]), .q(state[i]), .clk(wb_clk), .rst(wb_rst)); end endgenerate assign sel = select | state; vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(32)) mux0 ( .a(wbm_dat_o), .sel(sel), .dout(wbs_dat_i)); vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(adr_size-adr_lo)) mux1 ( .a(wbm_adr_o), .sel(sel), .dout(wbs_adr_i)); vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(sel_size)) mux2 ( .a(wbm_sel_o), .sel(sel), .dout(wbs_sel_i)); vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(3)) mux3 ( .a(wbm_cti_o), .sel(sel), .dout(wbs_cti_i)); vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(2)) mux4 ( .a(wbm_bte_o), .sel(sel), .dout(wbs_bte_i)); vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(1)) mux5 ( .a(wbm_we_o), .sel(sel), .dout(wbs_we_i)); vl_mux_andor # ( .nr_of_ports(nr_of_ports), .width(1)) mux6 ( .a(wbm_stb_o), .sel(sel), .dout(wbs_stb_i)); assign wbs_cyc_i = |sel; assign wbm_dat_i = {nr_of_ports{wbs_dat_o}}; assign wbm_ack_i = {nr_of_ports{wbs_ack_o}} & sel; assign wbm_err_i = {nr_of_ports{wbs_err_o}} & sel; assign wbm_rty_i = {nr_of_ports{wbs_rty_o}} & sel; endmodule // WB RAM with byte enable module vl_wb_b3_ram_be ( wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wb_clk, wb_rst); parameter adr_size = 16; parameter adr_lo = 2; parameter mem_size = 1<<16; parameter dat_size = 32; parameter memory_init = 1; parameter memory_file = "vl_ram.vmem"; localparam aw = (adr_size - adr_lo); localparam dw = dat_size; localparam sw = dat_size/8; localparam cw = 3; localparam bw = 2; input [dw-1:0] wbs_dat_i; input [aw-1:0] wbs_adr_i; input [cw-1:0] wbs_cti_i; input [bw-1:0] wbs_bte_i; input [sw-1:0] wbs_sel_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dw-1:0] wbs_dat_o; output wbs_ack_o; input wb_clk, wb_rst; wire [sw-1:0] cke; reg wbs_ack_o; vl_ram_be # ( .data_width(dat_size), .addr_width(adr_size-2), .mem_size(mem_size), .memory_init(memory_init), .memory_file(memory_file)) ram0( .d(wbs_dat_i), .adr(wbs_adr_i[adr_size-1:2]), .be(wbs_sel_i), .we(wbs_we_i), .q(wbs_dat_o), .clk(wb_clk) ); always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wbs_ack_o <= 1'b0; else if (wbs_cti_i==3'b000 | wbs_cti_i==3'b111) wbs_ack_o <= wbs_stb_i & wbs_cyc_i & !wbs_ack_o; else wbs_ack_o <= wbs_stb_i & wbs_cyc_i; endmodule // WB RAM with byte enable module vl_wb_b4_ram_be ( wb_dat_i, wb_adr_i, wb_sel_i, wb_we_i, wb_stb_i, wb_cyc_i, wb_dat_o, wb_stall_o, wb_ack_o, wb_clk, wb_rst); parameter dat_width = 32; parameter adr_width = 8; input [dat_width-1:0] wb_dat_i; input [adr_width-1:0] wb_adr_i; input [dat_width/8-1:0] wb_sel_i; input wb_we_i, wb_stb_i, wb_cyc_i; output [dat_width-1:0] wb_dat_o; reg [dat_width-1:0] wb_dat_o; output wb_stall_o; output wb_ack_o; reg wb_ack_o; input wb_clk, wb_rst; wire [dat_width/8-1:0] cke; generate if (dat_width==32) begin reg [7:0] ram3 [1<<(adr_width-2)-1:0]; reg [7:0] ram2 [1<<(adr_width-2)-1:0]; reg [7:0] ram1 [1<<(adr_width-2)-1:0]; reg [7:0] ram0 [1<<(adr_width-2)-1:0]; assign cke = wb_sel_i & {(dat_width/8){wb_we_i}}; always @ (posedge wb_clk) begin if (cke[3]) ram3[wb_adr_i[adr_width-1:2]] <= wb_dat_i[31:24]; if (cke[2]) ram2[wb_adr_i[adr_width-1:2]] <= wb_dat_i[23:16]; if (cke[1]) ram1[wb_adr_i[adr_width-1:2]] <= wb_dat_i[15:8]; if (cke[0]) ram0[wb_adr_i[adr_width-1:2]] <= wb_dat_i[7:0]; end always @ (posedge wb_clk or posedge wb_rst) begin if (wb_rst) wb_dat_o <= 32'h0; else wb_dat_o <= {ram3[wb_adr_i[adr_width-1:2]],ram2[wb_adr_i[adr_width-1:2]],ram1[wb_adr_i[adr_width-1:2]],ram0[wb_adr_i[adr_width-1:2]]}; end end endgenerate always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack_o <= 1'b0; else wb_ack_o <= wb_stb_i & wb_cyc_i; assign wb_stall_o = 1'b0; endmodule // WB ROM module vl_wb_b4_rom ( wb_adr_i, wb_stb_i, wb_cyc_i, wb_dat_o, stall_o, wb_ack_o, wb_clk, wb_rst); parameter dat_width = 32; parameter dat_default = 32'h15000000; parameter adr_width = 32; /* `ifndef ROM `define ROM "rom.v" `endif */ input [adr_width-1:2] wb_adr_i; input wb_stb_i; input wb_cyc_i; output [dat_width-1:0] wb_dat_o; reg [dat_width-1:0] wb_dat_o; output wb_ack_o; reg wb_ack_o; output stall_o; input wb_clk; input wb_rst; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_dat_o <= {dat_width{1'b0}}; else case (wb_adr_i[adr_width-1:2]) `ifdef ROM `include `ROM `endif default: wb_dat_o <= dat_default; endcase // case (wb_adr_i) always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack_o <= 1'b0; else wb_ack_o <= wb_stb_i & wb_cyc_i; assign stall_o = 1'b0; endmodule // WB ROM module vl_wb_boot_rom ( wb_adr_i, wb_stb_i, wb_cyc_i, wb_dat_o, wb_ack_o, hit_o, wb_clk, wb_rst); parameter adr_hi = 31; parameter adr_lo = 28; parameter adr_sel = 4'hf; parameter addr_width = 5; /* `ifndef BOOT_ROM `define BOOT_ROM "boot_rom.v" `endif */ input [adr_hi:2] wb_adr_i; input wb_stb_i; input wb_cyc_i; output [31:0] wb_dat_o; output wb_ack_o; output hit_o; input wb_clk; input wb_rst; wire hit; reg [31:0] wb_dat; reg wb_ack; assign hit = wb_adr_i[adr_hi:adr_lo] == adr_sel; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_dat <= 32'h15000000; else case (wb_adr_i[addr_width-1:2]) `ifdef BOOT_ROM `include `BOOT_ROM `endif /* // Zero r0 and jump to 0x00000100 0 : wb_dat <= 32'h18000000; 1 : wb_dat <= 32'hA8200000; 2 : wb_dat <= 32'hA8C00100; 3 : wb_dat <= 32'h44003000; 4 : wb_dat <= 32'h15000000; */ default: wb_dat <= 32'h00000000; endcase // case (wb_adr_i) always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack <= 1'b0; else wb_ack <= wb_stb_i & wb_cyc_i & hit & !wb_ack; assign hit_o = hit; assign wb_dat_o = wb_dat & {32{wb_ack}}; assign wb_ack_o = wb_ack; endmodule module vl_wb_dpram ( // wishbone slave side a wbsa_dat_i, wbsa_adr_i, wbsa_we_i, wbsa_cyc_i, wbsa_stb_i, wbsa_dat_o, wbsa_ack_o, wbsa_clk, wbsa_rst, // wishbone slave side a wbsb_dat_i, wbsb_adr_i, wbsb_we_i, wbsb_cyc_i, wbsb_stb_i, wbsb_dat_o, wbsb_ack_o, wbsb_clk, wbsb_rst); parameter data_width = 32; parameter addr_width = 8; parameter dat_o_mask_a = 1; parameter dat_o_mask_b = 1; input [31:0] wbsa_dat_i; input [addr_width-1:2] wbsa_adr_i; input wbsa_we_i, wbsa_cyc_i, wbsa_stb_i; output [31:0] wbsa_dat_o; output wbsa_ack_o; input wbsa_clk, wbsa_rst; input [31:0] wbsb_dat_i; input [addr_width-1:2] wbsb_adr_i; input wbsb_we_i, wbsb_cyc_i, wbsb_stb_i; output [31:0] wbsb_dat_o; output wbsb_ack_o; input wbsb_clk, wbsb_rst; wire wbsa_dat_tmp, wbsb_dat_tmp; vl_dpram_2r2w # ( .data_width(data_width), .addr_width(addr_width) ) dpram0( .d_a(wbsa_dat_i), .q_a(wbsa_dat_tmp), .adr_a(wbsa_adr_i), .we_a(wbsa_we_i), .clk_a(wbsa_clk), .d_b(wbsb_dat_i), .q_b(wbsb_dat_tmp), .adr_b(wbsb_adr_i), .we_b(wbsb_we_i), .clk_b(wbsb_clk) ); generate if (dat_o_mask_a==1) assign wbsa_dat_o = wbsa_dat_tmp & {data_width{wbsa_ack_o}}; endgenerate generate if (dat_o_mask_a==0) assign wbsa_dat_o = wbsa_dat_tmp; endgenerate generate if (dat_o_mask_b==1) assign wbsb_dat_o = wbsb_dat_tmp & {data_width{wbsb_ack_o}}; endgenerate generate if (dat_o_mask_b==0) assign wbsb_dat_o = wbsb_dat_tmp; endgenerate vl_spr ack_a( .sp(wbsa_cyc_i & wbsa_stb_i & !wbsa_ack_o), .r(1'b1), .q(wbsa_ack_o), .clk(wbsa_clk), .rst(wbsa_rst)); vl_spr ack_b( .sp(wbsb_cyc_i & wbsb_stb_i & !wbsb_ack_o), .r(1'b1), .q(wbsb_ack_o), .clk(wbsb_clk), .rst(wbsb_rst)); endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Arithmetic functions //// //// //// //// Description //// //// Arithmetic functions for ALU and DSP //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // signed multiplication module vl_mults (a,b,p); parameter operand_a_width = 18; parameter operand_b_width = 18; parameter result_hi = 35; parameter result_lo = 0; input [operand_a_width-1:0] a; input [operand_b_width-1:0] b; output [result_hi:result_lo] p; wire signed [operand_a_width-1:0] ai; wire signed [operand_b_width-1:0] bi; wire signed [operand_a_width+operand_b_width-1:0] result; assign ai = a; assign bi = b; assign result = ai * bi; assign p = result[result_hi:result_lo]; endmodule module vl_mults18x18 (a,b,p); input [17:0] a,b; output [35:0] p; vl_mult # (.operand_a_width(18), .operand_b_width(18)) mult0 (.a(a), .b(b), .p(p)); endmodule // unsigned multiplication module vl_mult (a,b,p); parameter operand_a_width = 18; parameter operand_b_width = 18; parameter result_hi = 35; parameter result_lo = 0; input [operand_a_width-1:0] a; input [operand_b_width-1:0] b; output [result_hi:result_hi] p; wire [operand_a_width+operand_b_width-1:0] result; assign result = a * b; assign p = result[result_hi:result_lo]; endmodule // shift unit // supporting the following shift functions // SLL // SRL // SRA module vl_shift_unit_32( din, s, dout, opcode); input [31:0] din; // data in operand input [4:0] s; // shift operand input [1:0] opcode; output [31:0] dout; parameter opcode_sll = 2'b00; //parameter opcode_srl = 2'b01; parameter opcode_sra = 2'b10; //parameter opcode_ror = 2'b11; wire sll, sra; assign sll = opcode == opcode_sll; assign sra = opcode == opcode_sra; wire [15:1] s1; wire [3:0] sign; wire [7:0] tmp [0:3]; // first stage is multiplier based // shift operand as fractional 8.7 assign s1[15] = sll & s[2:0]==3'd7; assign s1[14] = sll & s[2:0]==3'd6; assign s1[13] = sll & s[2:0]==3'd5; assign s1[12] = sll & s[2:0]==3'd4; assign s1[11] = sll & s[2:0]==3'd3; assign s1[10] = sll & s[2:0]==3'd2; assign s1[ 9] = sll & s[2:0]==3'd1; assign s1[ 8] = s[2:0]==3'd0; assign s1[ 7] = !sll & s[2:0]==3'd1; assign s1[ 6] = !sll & s[2:0]==3'd2; assign s1[ 5] = !sll & s[2:0]==3'd3; assign s1[ 4] = !sll & s[2:0]==3'd4; assign s1[ 3] = !sll & s[2:0]==3'd5; assign s1[ 2] = !sll & s[2:0]==3'd6; assign s1[ 1] = !sll & s[2:0]==3'd7; assign sign[3] = din[31] & sra; assign sign[2] = sign[3] & (&din[31:24]); assign sign[1] = sign[2] & (&din[23:16]); assign sign[0] = sign[1] & (&din[15:8]); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte3 ( .a({sign[3], {8{sign[3]}},din[31:24], din[23:16]}), .b({1'b0,s1}), .p(tmp[3])); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte2 ( .a({sign[2], din[31:24] ,din[23:16], din[15:8]}), .b({1'b0,s1}), .p(tmp[2])); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte1 ( .a({sign[1], din[23:16] ,din[15:8], din[7:0]}), .b({1'b0,s1}), .p(tmp[1])); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte0 ( .a({sign[0], din[15:8] ,din[7:0], 8'h00}), .b({1'b0,s1}), .p(tmp[0])); // second stage is multiplexer based // shift on byte level // mux byte 3 assign dout[31:24] = (s[4:3]==2'b00) ? tmp[3] : (sll & s[4:3]==2'b01) ? tmp[2] : (sll & s[4:3]==2'b10) ? tmp[1] : (sll & s[4:3]==2'b11) ? tmp[0] : {8{sign[3]}}; // mux byte 2 assign dout[23:16] = (s[4:3]==2'b00) ? tmp[2] : (sll & s[4:3]==2'b01) ? tmp[1] : (sll & s[4:3]==2'b10) ? tmp[0] : (sll & s[4:3]==2'b11) ? {8{1'b0}} : (s[4:3]==2'b01) ? tmp[3] : {8{sign[3]}}; // mux byte 1 assign dout[15:8] = (s[4:3]==2'b00) ? tmp[1] : (sll & s[4:3]==2'b01) ? tmp[0] : (sll & s[4:3]==2'b10) ? {8{1'b0}} : (sll & s[4:3]==2'b11) ? {8{1'b0}} : (s[4:3]==2'b01) ? tmp[2] : (s[4:3]==2'b10) ? tmp[3] : {8{sign[3]}}; // mux byte 0 assign dout[7:0] = (s[4:3]==2'b00) ? tmp[0] : (sll) ? {8{1'b0}}: (s[4:3]==2'b01) ? tmp[1] : (s[4:3]==2'b10) ? tmp[2] : tmp[3]; endmodule // logic unit // supporting the following logic functions // a and b // a or b // a xor b // not b module vl_logic_unit( a, b, result, opcode); parameter width = 32; parameter opcode_and = 2'b00; parameter opcode_or = 2'b01; parameter opcode_xor = 2'b10; input [width-1:0] a,b; output [width-1:0] result; input [1:0] opcode; assign result = (opcode==opcode_and) ? a & b : (opcode==opcode_or) ? a | b : (opcode==opcode_xor) ? a ^ b : b; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log