URL
https://opencores.org/ocsvn/versatile_library/versatile_library/trunk
Subversion Repositories versatile_library
[/] [versatile_library/] [trunk/] [rtl/] [verilog/] [wb.v] - Rev 144
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, wishbone stuff //// //// //// //// Description //// //// Wishbone compliant modules //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `ifdef WB_ADR_INC `timescale 1ns/1ns `define MODULE wb_adr_inc module `BASE`MODULE ( cyc_i, stb_i, cti_i, bte_i, adr_i, we_i, ack_o, adr_o, clk, rst); `undef MODULE parameter adr_width = 10; parameter max_burst_width = 4; input cyc_i, stb_i, we_i; input [2:0] cti_i; input [1:0] bte_i; input [adr_width-1:0] adr_i; output [adr_width-1:0] adr_o; output ack_o; input clk, rst; reg [adr_width-1:0] adr; wire [max_burst_width-1:0] to_adr; reg [max_burst_width-1:0] last_adr; reg last_cycle; localparam idle_or_eoc = 1'b0; localparam cyc_or_ws = 1'b1; always @ (posedge clk or posedge rst) if (rst) last_adr <= {max_burst_width{1'b0}}; else if (stb_i) last_adr <=adr_o[max_burst_width-1:0]; generate if (max_burst_width==0) begin : inst_0 reg ack_o; assign adr_o = adr_i; always @ (posedge clk or posedge rst) if (rst) ack_o <= 1'b0; else ack_o <= cyc_i & stb_i & !ack_o; end else begin always @ (posedge clk or posedge rst) if (rst) last_cycle <= idle_or_eoc; else last_cycle <= (!cyc_i) ? idle_or_eoc : //idle (cyc_i & ack_o & (cti_i==3'b000 | cti_i==3'b111)) ? idle_or_eoc : // eoc (cyc_i & !stb_i) ? cyc_or_ws : //ws cyc_or_ws; // cyc assign to_adr = (last_cycle==idle_or_eoc) ? adr_i[max_burst_width-1:0] : adr[max_burst_width-1:0]; assign adr_o[max_burst_width-1:0] = (we_i) ? adr_i[max_burst_width-1:0] : (!stb_i) ? last_adr : (last_cycle==idle_or_eoc) ? adr_i[max_burst_width-1:0] : adr[max_burst_width-1:0]; assign ack_o = (last_cycle==cyc_or_ws) & stb_i; end endgenerate generate if (max_burst_width==2) begin : inst_2 always @ (posedge clk or posedge rst) if (rst) adr <= 2'h0; else if (cyc_i & stb_i) adr[1:0] <= to_adr[1:0] + 2'd1; else adr <= to_adr[1:0]; end endgenerate generate if (max_burst_width==3) begin : inst_3 always @ (posedge clk or posedge rst) if (rst) adr <= 3'h0; else if (cyc_i & stb_i) case (bte_i) 2'b01: adr[2:0] <= {to_adr[2],to_adr[1:0] + 2'd1}; default: adr[3:0] <= to_adr[2:0] + 3'd1; endcase else adr <= to_adr[2:0]; end endgenerate generate if (max_burst_width==4) begin : inst_4 always @ (posedge clk or posedge rst) if (rst) adr <= 4'h0; else if (stb_i) // | (!stb_i & last_cycle!=ws)) // for !stb_i restart with adr_i +1, only inc once case (bte_i) 2'b01: adr[3:0] <= {to_adr[3:2],to_adr[1:0] + 2'd1}; 2'b10: adr[3:0] <= {to_adr[3],to_adr[2:0] + 3'd1}; default: adr[3:0] <= to_adr + 4'd1; endcase else adr <= to_adr[3:0]; end endgenerate generate if (adr_width > max_burst_width) begin : pass_through assign adr_o[adr_width-1:max_burst_width] = adr_i[adr_width-1:max_burst_width]; end endgenerate endmodule `endif `ifdef WB_B4_EOC `define MODULE wb_b4_eoc module `BASE`MODULE ( cyc_i, stb_i, stall_o, ack_o, busy, eoc, clk, rst); `undef MODULE input cyc_i, stb_i, ack_o; output busy, eoc; input clk, rst; `define MODULE cnt_bin_ce_rew_zq_l1 `BASE`MODULE # ( .length(4), level1_value(1)) cnt0 ( .cke(), .rew(), .zq(), .level1(), .rst(), clk); `undef MODULE endmodule `endif `ifdef WB3WB3_BRIDGE // async wb3 - wb3 bridge `timescale 1ns/1ns `define MODULE wb3wb3_bridge module `BASE`MODULE ( `undef MODULE // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_clk, wbs_rst, // wishbone master side wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_bte_o, wbm_cti_o, wbm_we_o, wbm_cyc_o, wbm_stb_o, wbm_dat_i, wbm_ack_i, wbm_clk, wbm_rst); parameter style = "FIFO"; // valid: simple, FIFO parameter addr_width = 4; input [31:0] wbs_dat_i; input [31:2] wbs_adr_i; input [3:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i, wbs_cyc_i, wbs_stb_i; output [31:0] wbs_dat_o; output wbs_ack_o; input wbs_clk, wbs_rst; output [31:0] wbm_dat_o; output reg [31:2] wbm_adr_o; output [3:0] wbm_sel_o; output reg [1:0] wbm_bte_o; output reg [2:0] wbm_cti_o; output reg wbm_we_o; output wbm_cyc_o; output wbm_stb_o; input [31:0] wbm_dat_i; input wbm_ack_i; input wbm_clk, wbm_rst; // bte parameter linear = 2'b00; parameter wrap4 = 2'b01; parameter wrap8 = 2'b10; parameter wrap16 = 2'b11; // cti parameter classic = 3'b000; parameter incburst = 3'b010; parameter endofburst = 3'b111; localparam wbs_adr = 1'b0; localparam wbs_data = 1'b1; localparam wbm_adr0 = 2'b00; localparam wbm_adr1 = 2'b01; localparam wbm_data = 2'b10; localparam wbm_data_wait = 2'b11; reg [1:0] wbs_bte_reg; reg wbs; wire wbs_eoc_alert, wbm_eoc_alert; reg wbs_eoc, wbm_eoc; reg [1:0] wbm; wire [1:16] wbs_count, wbm_count; wire [35:0] a_d, a_q, b_d, b_q; wire a_wr, a_rd, a_fifo_full, a_fifo_empty, b_wr, b_rd, b_fifo_full, b_fifo_empty; reg a_rd_reg; wire b_rd_adr, b_rd_data; wire b_rd_data_reg; wire [35:0] temp; `define WE 5 `define BTE 4:3 `define CTI 2:0 assign wbs_eoc_alert = (wbs_bte_reg==wrap4 & wbs_count[3]) | (wbs_bte_reg==wrap8 & wbs_count[7]) | (wbs_bte_reg==wrap16 & wbs_count[15]); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs_eoc <= 1'b0; else if (wbs==wbs_adr & wbs_stb_i & !a_fifo_full) wbs_eoc <= (wbs_bte_i==linear) | (wbs_cti_i==3'b111); else if (wbs_eoc_alert & (a_rd | a_wr)) wbs_eoc <= 1'b1; `define MODULE cnt_shreg_ce_clear `BASE`MODULE # ( .length(16)) `undef MODULE cnt0 ( .cke(wbs_ack_o), .clear(wbs_eoc), .q(wbs_count), .rst(wbs_rst), .clk(wbs_clk)); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs <= wbs_adr; else if ((wbs==wbs_adr) & wbs_cyc_i & wbs_stb_i & a_fifo_empty) wbs <= wbs_data; else if (wbs_eoc & wbs_ack_o) wbs <= wbs_adr; // wbs FIFO assign a_d = (wbs==wbs_adr) ? {wbs_adr_i[31:2],wbs_we_i,((wbs_cti_i==3'b111) ? {2'b00,3'b000} : {wbs_bte_i,wbs_cti_i})} : {wbs_dat_i,wbs_sel_i}; assign a_wr = (wbs==wbs_adr) ? wbs_cyc_i & wbs_stb_i & a_fifo_empty : (wbs==wbs_data) ? wbs_we_i & wbs_stb_i & !a_fifo_full : 1'b0; assign a_rd = !a_fifo_empty; always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) a_rd_reg <= 1'b0; else a_rd_reg <= a_rd; assign wbs_ack_o = a_rd_reg | (a_wr & wbs==wbs_data); assign wbs_dat_o = a_q[35:4]; always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs_bte_reg <= 2'b00; else wbs_bte_reg <= wbs_bte_i; // wbm FIFO assign wbm_eoc_alert = (wbm_bte_o==wrap4 & wbm_count[3]) | (wbm_bte_o==wrap8 & wbm_count[7]) | (wbm_bte_o==wrap16 & wbm_count[15]); always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) wbm_eoc <= 1'b0; else if (wbm==wbm_adr0 & !b_fifo_empty) wbm_eoc <= b_q[`BTE] == linear; else if (wbm_eoc_alert & wbm_ack_i) wbm_eoc <= 1'b1; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) wbm <= wbm_adr0; else /* if ((wbm==wbm_adr0 & !b_fifo_empty) | (wbm==wbm_adr1 & !b_fifo_empty & wbm_we_o) | (wbm==wbm_adr1 & !wbm_we_o) | (wbm==wbm_data & wbm_ack_i & wbm_eoc)) wbm <= {wbm[0],!(wbm[1] ^ wbm[0])}; // count sequence 00,01,10 */ case (wbm) wbm_adr0: if (!b_fifo_empty) wbm <= wbm_adr1; wbm_adr1: if (!wbm_we_o | (!b_fifo_empty & wbm_we_o)) wbm <= wbm_data; wbm_data: if (wbm_ack_i & wbm_eoc) wbm <= wbm_adr0; else if (b_fifo_empty & wbm_we_o & wbm_ack_i) wbm <= wbm_data_wait; wbm_data_wait: if (!b_fifo_empty) wbm <= wbm_data; endcase assign b_d = {wbm_dat_i,4'b1111}; assign b_wr = !wbm_we_o & wbm_ack_i; assign b_rd_adr = (wbm==wbm_adr0 & !b_fifo_empty); assign b_rd_data = (wbm==wbm_adr1 & !b_fifo_empty & wbm_we_o) ? 1'b1 : // b_q[`WE] (wbm==wbm_data & !b_fifo_empty & wbm_we_o & wbm_ack_i & !wbm_eoc) ? 1'b1 : (wbm==wbm_data_wait & !b_fifo_empty) ? 1'b1 : 1'b0; assign b_rd = b_rd_adr | b_rd_data; `define MODULE dff `BASE`MODULE dff1 ( .d(b_rd_data), .q(b_rd_data_reg), .clk(wbm_clk), .rst(wbm_rst)); `undef MODULE `define MODULE dff_ce `BASE`MODULE # ( .width(36)) dff2 ( .d(b_q), .ce(b_rd_data_reg), .q(temp), .clk(wbm_clk), .rst(wbm_rst)); `undef MODULE assign {wbm_dat_o,wbm_sel_o} = (b_rd_data_reg) ? b_q : temp; `define MODULE cnt_shreg_ce_clear `BASE`MODULE # ( .length(16)) `undef MODULE cnt1 ( .cke(wbm_ack_i), .clear(wbm_eoc), .q(wbm_count), .rst(wbm_rst), .clk(wbm_clk)); assign wbm_cyc_o = (wbm==wbm_data | wbm==wbm_data_wait); assign wbm_stb_o = (wbm==wbm_data); always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) {wbm_adr_o,wbm_we_o,wbm_bte_o,wbm_cti_o} <= {30'h0,1'b0,linear,classic}; else begin if (wbm==wbm_adr0 & !b_fifo_empty) {wbm_adr_o,wbm_we_o,wbm_bte_o,wbm_cti_o} <= b_q; else if (wbm_eoc_alert & wbm_ack_i) wbm_cti_o <= endofburst; end //async_fifo_dw_simplex_top `define MODULE fifo_2r2w_async_simplex `BASE`MODULE `undef MODULE # ( .data_width(36), .addr_width(addr_width)) fifo ( // a side .a_d(a_d), .a_wr(a_wr), .a_fifo_full(a_fifo_full), .a_q(a_q), .a_rd(a_rd), .a_fifo_empty(a_fifo_empty), .a_clk(wbs_clk), .a_rst(wbs_rst), // b side .b_d(b_d), .b_wr(b_wr), .b_fifo_full(b_fifo_full), .b_q(b_q), .b_rd(b_rd), .b_fifo_empty(b_fifo_empty), .b_clk(wbm_clk), .b_rst(wbm_rst) ); endmodule `undef WE `undef BTE `undef CTI `endif `ifdef WB3AVALON_BRIDGE `define MODULE wb3avalon_bridge module `BASE`MODULE ( `undef MODULE // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_clk, wbs_rst, // avalon master side readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, clk, rst); parameter linewrapburst = 1'b0; input [31:0] wbs_dat_i; input [31:2] wbs_adr_i; input [3:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i; input wbs_cyc_i; input wbs_stb_i; output [31:0] wbs_dat_o; output wbs_ack_o; input wbs_clk, wbs_rst; input [31:0] readdata; output [31:0] writedata; output [31:2] address; output [3:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input readdatavalid; input waitrequest; input clk; input rst; wire [1:0] wbm_bte_o; wire [2:0] wbm_cti_o; wire wbm_we_o, wbm_cyc_o, wbm_stb_o, wbm_ack_i; reg last_cyc; reg [3:0] counter; reg read_busy; always @ (posedge clk or posedge rst) if (rst) last_cyc <= 1'b0; else last_cyc <= wbm_cyc_o; always @ (posedge clk or posedge rst) if (rst) read_busy <= 1'b0; else if (read & !waitrequest) read_busy <= 1'b1; else if (wbm_ack_i & wbm_cti_o!=3'b010) read_busy <= 1'b0; assign read = wbm_cyc_o & wbm_stb_o & !wbm_we_o & !read_busy; assign beginbursttransfer = (!last_cyc & wbm_cyc_o) & wbm_cti_o==3'b010; assign burstcount = (wbm_bte_o==2'b01) ? 4'd4 : (wbm_bte_o==2'b10) ? 4'd8 : (wbm_bte_o==2'b11) ? 4'd16: 4'd1; assign wbm_ack_i = (readdatavalid) | (write & !waitrequest); always @ (posedge clk or posedge rst) if (rst) begin counter <= 4'd0; end else if (wbm_we_o) begin if (!waitrequest & !last_cyc & wbm_cyc_o) begin counter <= burstcount -4'd1; end else if (waitrequest & !last_cyc & wbm_cyc_o) begin counter <= burstcount; end else if (!waitrequest & wbm_stb_o) begin counter <= counter - 4'd1; end end assign write = wbm_cyc_o & wbm_stb_o & wbm_we_o & counter!=4'd0; `define MODULE wb3wb3_bridge `BASE`MODULE wbwb3inst ( `undef MODULE // wishbone slave side .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i), .wbs_sel_i(wbs_sel_i), .wbs_bte_i(wbs_bte_i), .wbs_cti_i(wbs_cti_i), .wbs_we_i(wbs_we_i), .wbs_cyc_i(wbs_cyc_i), .wbs_stb_i(wbs_stb_i), .wbs_dat_o(wbs_dat_o), .wbs_ack_o(wbs_ack_o), .wbs_clk(wbs_clk), .wbs_rst(wbs_rst), // wishbone master side .wbm_dat_o(writedata), .wbm_adr_o(address), .wbm_sel_o(be), .wbm_bte_o(wbm_bte_o), .wbm_cti_o(wbm_cti_o), .wbm_we_o(wbm_we_o), .wbm_cyc_o(wbm_cyc_o), .wbm_stb_o(wbm_stb_o), .wbm_dat_i(readdata), .wbm_ack_i(wbm_ack_i), .wbm_clk(clk), .wbm_rst(rst)); endmodule `endif `ifdef WB_ARBITER `define MODULE wb_arbiter module `BASE`MODULE ( `undef MODULE wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_cti_o, wbm_bte_o, wbm_we_o, wbm_stb_o, wbm_cyc_o, wbm_dat_i, wbm_stall_i, wbm_ack_i, wbm_err_i, wbm_rty_i, wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_cti_i, wbs_bte_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_stall_o, wbs_ack_o, wbs_err_o, wbs_rty_o, wb_clk, wb_rst ); parameter nr_of_ports = 3; parameter adr_size = 26; parameter adr_lo = 2; parameter dat_size = 32; parameter sel_size = dat_size/8; localparam aw = (adr_size - adr_lo) * nr_of_ports; localparam dw = dat_size * nr_of_ports; localparam sw = sel_size * nr_of_ports; localparam cw = 3 * nr_of_ports; localparam bw = 2 * nr_of_ports; input [dw-1:0] wbm_dat_o; input [aw-1:0] wbm_adr_o; input [sw-1:0] wbm_sel_o; input [cw-1:0] wbm_cti_o; input [bw-1:0] wbm_bte_o; input [nr_of_ports-1:0] wbm_we_o, wbm_stb_o, wbm_cyc_o; output [dw-1:0] wbm_dat_i; output [nr_of_ports-1:0] wbm_stall_o, wbm_ack_i, wbm_err_i, wbm_rty_i; output [dat_size-1:0] wbs_dat_i; output [adr_size-1:adr_lo] wbs_adr_i; output [sel_size-1:0] wbs_sel_i; output [2:0] wbs_cti_i; output [1:0] wbs_bte_i; output wbs_we_i, wbs_stb_i, wbs_cyc_i; input [dat_size-1:0] wbs_dat_o; input wbs_stall_o, wbs_ack_o, wbs_err_o, wbs_rty_o; input wb_clk, wb_rst; reg [nr_of_ports-1:0] select; wire [nr_of_ports-1:0] state; wire [nr_of_ports-1:0] eoc; // end-of-cycle wire [nr_of_ports-1:0] sel; wire idle; genvar i; assign idle = !(|state); generate if (nr_of_ports == 2) begin wire [2:0] wbm1_cti_o, wbm0_cti_o; assign {wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[1],!wbm_cyc_o[1] & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 2'b1x : select = 2'b10; 2'b01 : select = 2'b01; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 3) begin wire [2:0] wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 3'b1xx : select = 3'b100; 3'b01x : select = 3'b010; 3'b001 : select = 3'b001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; // assign select = (idle) ? {wbm_cyc_o[2],!wbm_cyc_o[2] & wbm_cyc_o[1],wbm_cyc_o[2:1]==2'b00 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 4) begin wire [2:0] wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 4'b1xxx : select = 4'b1000; 4'b01xx : select = 4'b0100; 4'b001x : select = 4'b0010; 4'b0001 : select = 4'b0001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 5) begin wire [2:0] wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 5'b1xxxx : select = 5'b10000; 5'b01xxx : select = 5'b01000; 5'b001xx : select = 5'b00100; 5'b0001x : select = 5'b00010; 5'b00001 : select = 5'b00001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 6) begin wire [2:0] wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 6'b1xxxxx : select = 6'b100000; 6'b01xxxx : select = 6'b010000; 6'b001xxx : select = 6'b001000; 6'b0001xx : select = 6'b000100; 6'b00001x : select = 6'b000010; 6'b000001 : select = 6'b000001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[5] = (wbm_ack_i[5] & (wbm5_cti_o == 3'b000 | wbm5_cti_o == 3'b111)) | !wbm_cyc_o[5]; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 7) begin wire [2:0] wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 7'b1xxxxxx : select = 7'b1000000; 7'b01xxxxx : select = 7'b0100000; 7'b001xxxx : select = 7'b0010000; 7'b0001xxx : select = 7'b0001000; 7'b00001xx : select = 7'b0000100; 7'b000001x : select = 7'b0000010; 7'b0000001 : select = 7'b0000001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[6] = (wbm_ack_i[6] & (wbm6_cti_o == 3'b000 | wbm6_cti_o == 3'b111)) | !wbm_cyc_o[6]; assign eoc[5] = (wbm_ack_i[5] & (wbm5_cti_o == 3'b000 | wbm5_cti_o == 3'b111)) | !wbm_cyc_o[5]; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate if (nr_of_ports == 8) begin wire [2:0] wbm7_cti_o, wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o, wbm1_cti_o, wbm0_cti_o; assign {wbm7_cti_o, wbm6_cti_o, wbm5_cti_o, wbm4_cti_o, wbm3_cti_o, wbm2_cti_o,wbm1_cti_o,wbm0_cti_o} = wbm_cti_o; //assign select = (idle) ? {wbm_cyc_o[3],!wbm_cyc_o[3] & wbm_cyc_o[2],wbm_cyc_o[3:2]==2'b00 & wbm_cyc_o[1],wbm_cyc_o[3:1]==3'b000 & wbm_cyc_o[0]} : {nr_of_ports{1'b0}}; always @ (idle or wbm_cyc_o) if (idle) casex (wbm_cyc_o) 8'b1xxxxxxx : select = 8'b10000000; 8'b01xxxxxx : select = 8'b01000000; 8'b001xxxxx : select = 8'b00100000; 8'b0001xxxx : select = 8'b00010000; 8'b00001xxx : select = 8'b00001000; 8'b000001xx : select = 8'b00000100; 8'b0000001x : select = 8'b00000010; 8'b00000001 : select = 8'b00000001; default : select = {nr_of_ports{1'b0}}; endcase else select = {nr_of_ports{1'b0}}; assign eoc[7] = (wbm_ack_i[7] & (wbm7_cti_o == 3'b000 | wbm7_cti_o == 3'b111)) | !wbm_cyc_o[7]; assign eoc[6] = (wbm_ack_i[6] & (wbm6_cti_o == 3'b000 | wbm6_cti_o == 3'b111)) | !wbm_cyc_o[6]; assign eoc[5] = (wbm_ack_i[5] & (wbm5_cti_o == 3'b000 | wbm5_cti_o == 3'b111)) | !wbm_cyc_o[5]; assign eoc[4] = (wbm_ack_i[4] & (wbm4_cti_o == 3'b000 | wbm4_cti_o == 3'b111)) | !wbm_cyc_o[4]; assign eoc[3] = (wbm_ack_i[3] & (wbm3_cti_o == 3'b000 | wbm3_cti_o == 3'b111)) | !wbm_cyc_o[3]; assign eoc[2] = (wbm_ack_i[2] & (wbm2_cti_o == 3'b000 | wbm2_cti_o == 3'b111)) | !wbm_cyc_o[2]; assign eoc[1] = (wbm_ack_i[1] & (wbm1_cti_o == 3'b000 | wbm1_cti_o == 3'b111)) | !wbm_cyc_o[1]; assign eoc[0] = (wbm_ack_i[0] & (wbm0_cti_o == 3'b000 | wbm0_cti_o == 3'b111)) | !wbm_cyc_o[0]; end endgenerate generate for (i=0;i<nr_of_ports;i=i+1) begin : spr0 `define MODULE spr `BASE`MODULE sr0( .sp(select[i]), .r(eoc[i]), .q(state[i]), .clk(wb_clk), .rst(wb_rst)); `undef MODULE end endgenerate assign sel = select | state; `define MODULE mux_andor `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(32)) mux0 ( .a(wbm_dat_o), .sel(sel), .dout(wbs_dat_i)); `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(adr_size-adr_lo)) mux1 ( .a(wbm_adr_o), .sel(sel), .dout(wbs_adr_i)); `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(sel_size)) mux2 ( .a(wbm_sel_o), .sel(sel), .dout(wbs_sel_i)); `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(3)) mux3 ( .a(wbm_cti_o), .sel(sel), .dout(wbs_cti_i)); `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(2)) mux4 ( .a(wbm_bte_o), .sel(sel), .dout(wbs_bte_i)); `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(1)) mux5 ( .a(wbm_we_o), .sel(sel), .dout(wbs_we_i)); `BASE`MODULE # ( .nr_of_ports(nr_of_ports), .width(1)) mux6 ( .a(wbm_stb_o), .sel(sel), .dout(wbs_stb_i)); `undef MODULE assign wbs_cyc_i = |sel; assign wbm_dat_i = {nr_of_ports{wbs_dat_o}}; assign wbm_ack_i = {nr_of_ports{wbs_ack_o}} & sel; assign wbm_err_i = {nr_of_ports{wbs_err_o}} & sel; assign wbm_rty_i = {nr_of_ports{wbs_rty_o}} & sel; endmodule `endif `ifdef WB_RAM // WB RAM with byte enable `define MODULE wb_ram module `BASE`MODULE ( `undef MODULE wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wb_clk, wb_rst); parameter adr_width = 16; parameter mem_size = 1<<adr_width; parameter dat_width = 32; parameter max_burst_width = 4; // only used for B3 parameter mode = "B3"; // valid options: B3, B4 parameter memory_init = 1; parameter memory_file = "vl_ram.vmem"; input [dat_width-1:0] wbs_dat_i; input [adr_width-1:0] wbs_adr_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input [dat_width/8-1:0] wbs_sel_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input wb_clk, wb_rst; wire [adr_width-1:0] adr; wire we; generate if (mode=="B3") begin : B3_inst `define MODULE wb_adr_inc `BASE`MODULE # ( .adr_width(adr_width), .max_burst_width(max_burst_width)) adr_inc0 ( .cyc_i(wbs_cyc_i), .stb_i(wbs_stb_i), .cti_i(wbs_cti_i), .bte_i(wbs_bte_i), .adr_i(wbs_adr_i), .we_i(wbs_we_i), .ack_o(wbs_ack_o), .adr_o(adr), .clk(wb_clk), .rst(wb_rst)); `undef MODULE assign we = wbs_we_i & wbs_ack_o; end else if (mode=="B4") begin : B4_inst reg wbs_ack_o_reg; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wbs_ack_o_reg <= 1'b0; else wbs_ack_o_reg <= wbs_stb_i & wbs_cyc_i; assign wbs_ack_o = wbs_ack_o_reg; assign wbs_stall_o = 1'b0; assign adr = wbs_adr_i; assign we = wbs_we_i & wbs_cyc_i & wbs_stb_i; end endgenerate `define MODULE ram_be `BASE`MODULE # ( .data_width(dat_width), .addr_width(adr_width), .mem_size(mem_size), .memory_init(memory_init), .memory_file(memory_file)) ram0( `undef MODULE .d(wbs_dat_i), .adr(adr), .be(wbs_sel_i), .we(we), .q(wbs_dat_o), .clk(wb_clk) ); endmodule `endif `ifdef WB_SHADOW_RAM // A wishbone compliant RAM module that can be placed in front of other memory controllers `define MODULE wb_shadow_ram module `BASE`MODULE ( `undef MODULE wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wbm_dat_o, wbm_adr_o, wbm_cti_o, wbm_bte_o, wbm_sel_o, wbm_we_o, wbm_stb_o, wbm_cyc_o, wbm_dat_i, wbm_ack_i, wbm_stall_i, wb_clk, wb_rst); parameter dat_width = 32; parameter mode = "B4"; parameter max_burst_width = 4; // only used for B3 parameter shadow_mem_adr_width = 10; parameter shadow_mem_size = 1024; parameter shadow_mem_init = 2; parameter shadow_mem_file = "vl_ram.v"; parameter main_mem_adr_width = 24; input [dat_width-1:0] wbs_dat_i; input [main_mem_adr_width-1:0] wbs_adr_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input [dat_width/8-1:0] wbs_sel_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; output [dat_width-1:0] wbm_dat_o; output [main_mem_adr_width-1:0] wbm_adr_o; output [2:0] wbm_cti_o; output [1:0] wbm_bte_o; output [dat_width/8-1:0] wbm_sel_o; output wbm_we_o, wbm_stb_o, wbm_cyc_o; input [dat_width-1:0] wbm_dat_i; input wbm_ack_i, wbm_stall_i; input wb_clk, wb_rst; generate if (shadow_mem_size>0) begin : shadow_ram_inst wire cyc; wire [dat_width-1:0] dat; wire stall, ack; assign cyc = wbs_cyc_i & (wbs_adr_i<=shadow_mem_size); `define MODULE wb_ram `BASE`MODULE # ( .dat_width(dat_width), .adr_width(shadow_mem_adr_width), .mem_size(shadow_mem_size), .memory_init(shadow_mem_init), .memory_file(shadow_mem_file), .mode(mode)) shadow_mem0 ( .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i[shadow_mem_adr_width-1:0]), .wbs_sel_i(wbs_sel_i), .wbs_we_i (wbs_we_i), .wbs_bte_i(wbs_bte_i), .wbs_cti_i(wbs_cti_i), .wbs_stb_i(wbs_stb_i), .wbs_cyc_i(cyc), .wbs_dat_o(dat), .wbs_stall_o(stall), .wbs_ack_o(ack), .wb_clk(wb_clk), .wb_rst(wb_rst)); `undef MODULE assign {wbm_dat_o, wbm_adr_o, wbm_cti_o, wbm_bte_o, wbm_sel_o, wbm_we_o, wbm_stb_o} = {wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i}; assign wbm_cyc_o = wbs_cyc_i & (wbs_adr_i>shadow_mem_size); assign wbs_dat_o = (dat & {dat_width{cyc}}) | (wbm_dat_i & {dat_width{wbm_cyc_o}}); assign wbs_ack_o = (ack & cyc) | (wbm_ack_i & wbm_cyc_o); assign wbs_stall_o = (stall & cyc) | (wbm_stall_i & wbm_cyc_o); end else begin : no_shadow_ram_inst assign {wbm_dat_o, wbm_adr_o, wbm_cti_o, wbm_bte_o, wbm_sel_o, wbm_we_o, wbm_stb_o, wbm_cyc_o} = {wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i}; assign {wbs_dat_o, wbs_ack_o, wbs_stall_o} = {wbm_dat_i, wbm_ack_i, wbm_stall_i}; end endgenerate endmodule `endif `ifdef WB_B4_ROM // WB ROM `define MODULE wb_b4_rom module `BASE`MODULE ( `undef MODULE wb_adr_i, wb_stb_i, wb_cyc_i, wb_dat_o, stall_o, wb_ack_o, wb_clk, wb_rst); parameter dat_width = 32; parameter dat_default = 32'h15000000; parameter adr_width = 32; /* //E2_ifndef ROM //E2_define ROM "rom.v" //E2_endif */ input [adr_width-1:2] wb_adr_i; input wb_stb_i; input wb_cyc_i; output [dat_width-1:0] wb_dat_o; reg [dat_width-1:0] wb_dat_o; output wb_ack_o; reg wb_ack_o; output stall_o; input wb_clk; input wb_rst; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_dat_o <= {dat_width{1'b0}}; else case (wb_adr_i[adr_width-1:2]) //E2_ifdef ROM //E2_include `ROM //E2_endif default: wb_dat_o <= dat_default; endcase // case (wb_adr_i) always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack_o <= 1'b0; else wb_ack_o <= wb_stb_i & wb_cyc_i; assign stall_o = 1'b0; endmodule `endif `ifdef WB_BOOT_ROM // WB ROM `define MODULE wb_boot_rom module `BASE`MODULE ( `undef MODULE wb_adr_i, wb_stb_i, wb_cyc_i, wb_dat_o, wb_ack_o, hit_o, wb_clk, wb_rst); parameter adr_hi = 31; parameter adr_lo = 28; parameter adr_sel = 4'hf; parameter addr_width = 5; /* //E2_ifndef BOOT_ROM //E2_define BOOT_ROM "boot_rom.v" //E2_endif */ input [adr_hi:2] wb_adr_i; input wb_stb_i; input wb_cyc_i; output [31:0] wb_dat_o; output wb_ack_o; output hit_o; input wb_clk; input wb_rst; wire hit; reg [31:0] wb_dat; reg wb_ack; assign hit = wb_adr_i[adr_hi:adr_lo] == adr_sel; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_dat <= 32'h15000000; else case (wb_adr_i[addr_width-1:2]) //E2_ifdef BOOT_ROM //E2_include `BOOT_ROM //E2_endif /* // Zero r0 and jump to 0x00000100 0 : wb_dat <= 32'h18000000; 1 : wb_dat <= 32'hA8200000; 2 : wb_dat <= 32'hA8C00100; 3 : wb_dat <= 32'h44003000; 4 : wb_dat <= 32'h15000000; */ default: wb_dat <= 32'h00000000; endcase // case (wb_adr_i) always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack <= 1'b0; else wb_ack <= wb_stb_i & wb_cyc_i & hit & !wb_ack; assign hit_o = hit; assign wb_dat_o = wb_dat & {32{wb_ack}}; assign wb_ack_o = wb_ack; endmodule `endif `ifdef WB_DPRAM `define MODULE wb_dpram module `BASE`MODULE ( `undef MODULE // wishbone slave side a wbsa_dat_i, wbsa_adr_i, wbsa_sel_i, wbsa_cti_i, wbsa_bte_i, wbsa_we_i, wbsa_cyc_i, wbsa_stb_i, wbsa_dat_o, wbsa_ack_o, wbsa_stall_o, wbsa_clk, wbsa_rst, // wishbone slave side b wbsb_dat_i, wbsb_adr_i, wbsb_sel_i, wbsb_cti_i, wbsb_bte_i, wbsb_we_i, wbsb_cyc_i, wbsb_stb_i, wbsb_dat_o, wbsb_ack_o, wbsb_stall_o, wbsb_clk, wbsb_rst); parameter data_width_a = 32; parameter data_width_b = data_width_a; parameter addr_width_a = 8; localparam addr_width_b = data_width_a * addr_width_a / data_width_b; parameter mem_size = (addr_width_a>addr_width_b) ? (1<<addr_width_a) : (1<<addr_width_b); parameter max_burst_width_a = 4; parameter max_burst_width_b = max_burst_width_a; parameter mode = "B3"; parameter memory_init = 0; parameter memory_file = "vl_ram.v"; parameter debug = 0; input [data_width_a-1:0] wbsa_dat_i; input [addr_width_a-1:0] wbsa_adr_i; input [data_width_a/8-1:0] wbsa_sel_i; input [2:0] wbsa_cti_i; input [1:0] wbsa_bte_i; input wbsa_we_i, wbsa_cyc_i, wbsa_stb_i; output [data_width_a-1:0] wbsa_dat_o; output wbsa_ack_o; output wbsa_stall_o; input wbsa_clk, wbsa_rst; input [data_width_b-1:0] wbsb_dat_i; input [addr_width_b-1:0] wbsb_adr_i; input [data_width_b/8-1:0] wbsb_sel_i; input [2:0] wbsb_cti_i; input [1:0] wbsb_bte_i; input wbsb_we_i, wbsb_cyc_i, wbsb_stb_i; output [data_width_b-1:0] wbsb_dat_o; output wbsb_ack_o; output wbsb_stall_o; input wbsb_clk, wbsb_rst; wire [addr_width_a-1:0] adr_a; wire [addr_width_b-1:0] adr_b; wire we_a, we_b; generate if (mode=="B3") begin : b3_inst `define MODULE wb_adr_inc `BASE`MODULE # ( .adr_width(addr_width_a), .max_burst_width(max_burst_width_a)) adr_inc0 ( .cyc_i(wbsa_cyc_i), .stb_i(wbsa_stb_i), .cti_i(wbsa_cti_i), .bte_i(wbsa_bte_i), .adr_i(wbsa_adr_i), .we_i(wbsa_we_i), .ack_o(wbsa_ack_o), .adr_o(adr_a), .clk(wbsa_clk), .rst(wbsa_rst)); assign we_a = wbsa_we_i & wbsa_ack_o; `BASE`MODULE # ( .adr_width(addr_width_b), .max_burst_width(max_burst_width_b)) adr_inc1 ( .cyc_i(wbsb_cyc_i), .stb_i(wbsb_stb_i), .cti_i(wbsb_cti_i), .bte_i(wbsb_bte_i), .adr_i(wbsb_adr_i), .we_i(wbsb_we_i), .ack_o(wbsb_ack_o), .adr_o(adr_b), .clk(wbsb_clk), .rst(wbsb_rst)); `undef MODULE assign we_b = wbsb_we_i & wbsb_ack_o; end else if (mode=="B4") begin : b4_inst assign adr_a = wbsa_adr_i; `define MODULE dff `BASE`MODULE dffacka ( .d(wbsa_stb_i & wbsa_cyc_i), .q(wbsa_ack_o), .clk(wbsa_clk), .rst(wbsa_rst)); assign wbsa_stall_o = 1'b0; assign we_a = wbsa_we_i & wbsa_cyc_i & wbsa_stb_i; assign adr_b = wbsb_adr_i; `BASE`MODULE dffackb ( .d(wbsb_stb_i & wbsb_cyc_i), .q(wbsb_ack_o), .clk(wbsb_clk), .rst(wbsb_rst)); `undef MODULE assign wbsb_stall_o = 1'b0; assign we_b = wbsb_we_i & wbsb_cyc_i & wbsb_stb_i; end endgenerate `define MODULE dpram_be_2r2w `BASE`MODULE # ( .a_data_width(data_width_a), .a_addr_width(addr_width_a), .mem_size(mem_size), .b_data_width(data_width_b), .memory_init(memory_init), .memory_file(memory_file), .debug(debug)) `undef MODULE ram_i ( .d_a(wbsa_dat_i), .q_a(wbsa_dat_o), .adr_a(adr_a), .be_a(wbsa_sel_i), .we_a(we_a), .clk_a(wbsa_clk), .d_b(wbsb_dat_i), .q_b(wbsb_dat_o), .adr_b(adr_b), .be_b(wbsb_sel_i), .we_b(we_b), .clk_b(wbsb_clk) ); endmodule `endif `ifdef WB_CACHE `define MODULE wb_cache module `BASE`MODULE ( wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_cti_i, wbs_bte_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wbs_clk, wbs_rst, wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_cti_o, wbm_bte_o, wbm_we_o, wbm_stb_o, wbm_cyc_o, wbm_dat_i, wbm_ack_i, wbm_stall_i, wbm_clk, wbm_rst ); `undef MODULE parameter dw_s = 32; parameter aw_s = 24; parameter dw_m = dw_s; //localparam aw_m = dw_s * aw_s / dw_m; localparam aw_m = (dw_s==dw_m) ? aw_s : (dw_s==dw_m*2) ? aw_s+1 : (dw_s==dw_m*4) ? aw_s+2 : (dw_s==dw_m*8) ? aw_s+3 : (dw_s==dw_m*16) ? aw_s+4 : (dw_s==dw_m*32) ? aw_s+5 : (dw_s==dw_m/2) ? aw_s-1 : (dw_s==dw_m/4) ? aw_s-2 : (dw_s==dw_m/8) ? aw_s-3 : (dw_s==dw_m/16) ? aw_s-4 : (dw_s==dw_m/32) ? aw_s-5 : 0; parameter wbs_max_burst_width = 4; parameter wbs_mode = "B3"; parameter async = 1; // wbs_clk != wbm_clk parameter nr_of_ways = 1; parameter aw_offset = 4; // 4 => 16 words per cache line parameter aw_slot = 10; parameter valid_mem = 0; parameter debug = 0; localparam aw_b_offset = aw_offset * dw_s / dw_m; localparam aw_tag = aw_s - aw_slot - aw_offset; parameter wbm_burst_size = 4; // valid options 4,8,16 localparam bte = (wbm_burst_size==4) ? 2'b01 : (wbm_burst_size==8) ? 2'b10 : 2'b11; `define SIZE2WIDTH wbm_burst_size localparam wbm_burst_width `SIZE2WIDTH_EXPR `undef SIZE2WIDTH localparam nr_of_wbm_burst = ((1<<aw_offset)/wbm_burst_size) * dw_s / dw_m; `define SIZE2WIDTH nr_of_wbm_burst localparam nr_of_wbm_burst_width `SIZE2WIDTH_EXPR `undef SIZE2WIDTH input [dw_s-1:0] wbs_dat_i; input [aw_s-1:0] wbs_adr_i; // dont include a1,a0 input [dw_s/8-1:0] wbs_sel_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dw_s-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input wbs_clk, wbs_rst; output [dw_m-1:0] wbm_dat_o; output [aw_m-1:0] wbm_adr_o; output [dw_m/8-1:0] wbm_sel_o; output [2:0] wbm_cti_o; output [1:0] wbm_bte_o; output wbm_stb_o, wbm_cyc_o, wbm_we_o; input [dw_m-1:0] wbm_dat_i; input wbm_ack_i; input wbm_stall_i; input wbm_clk, wbm_rst; wire valid, dirty, hit; wire [aw_tag-1:0] tag; wire tag_mem_we; wire [aw_tag-1:0] wbs_adr_tag; wire [aw_slot-1:0] wbs_adr_slot; wire [aw_offset-1:0] wbs_adr_word; wire [aw_s-1:0] wbs_adr; reg [1:0] state; localparam idle = 2'h0; localparam rdwr = 2'h1; localparam push = 2'h2; localparam pull = 2'h3; wire eoc; wire we; // cdc wire done, mem_alert, mem_done; // wbm side reg [aw_m-1:0] wbm_radr; reg [aw_m-1:0] wbm_wadr; //wire [aw_slot-1:0] wbm_adr; wire [aw_m-1:0] wbm_adr; wire wbm_radr_cke, wbm_wadr_cke; reg [2:0] phase; // phase = {we,stb,cyc} localparam wbm_wait = 3'b000; localparam wbm_wr = 3'b111; localparam wbm_wr_drain = 3'b101; localparam wbm_rd = 3'b011; localparam wbm_rd_drain = 3'b001; assign {wbs_adr_tag, wbs_adr_slot, wbs_adr_word} = wbs_adr_i; generate if (valid_mem==0) begin : no_valid_mem assign valid = 1'b1; end else begin : valid_mem_inst `define MODULE dpram_1r1w `BASE`MODULE # ( .data_width(1), .addr_width(aw_slot), .memory_init(2), .debug(debug)) valid_mem ( .d_a(1'b1), .adr_a(wbs_adr_slot), .we_a(mem_done), .clk_a(wbm_clk), .q_b(valid), .adr_b(wbs_adr_slot), .clk_b(wbs_clk)); `undef MODULE end endgenerate `define MODULE dpram_1r1w `BASE`MODULE # ( .data_width(aw_tag), .addr_width(aw_slot), .memory_init(2), .debug(debug)) tag_mem ( .d_a(wbs_adr_tag), .adr_a(wbs_adr_slot), .we_a(mem_done), .clk_a(wbm_clk), .q_b(tag), .adr_b(wbs_adr_slot), .clk_b(wbs_clk)); assign hit = wbs_adr_tag == tag; `undef MODULE `define MODULE dpram_1r2w `BASE`MODULE # ( .data_width(1), .addr_width(aw_slot), .memory_init(2), .debug(debug)) dirty_mem ( .d_a(1'b1), .q_a(dirty), .adr_a(wbs_adr_slot), .we_a(wbs_cyc_i & wbs_we_i & wbs_ack_o), .clk_a(wbs_clk), .d_b(1'b0), .adr_b(wbs_adr_slot), .we_b(mem_done), .clk_b(wbm_clk)); `undef MODULE generate if (wbs_mode=="B3") begin : inst_b3 `define MODULE wb_adr_inc `BASE`MODULE # ( .adr_width(aw_s), .max_burst_width(wbs_max_burst_width)) adr_inc0 ( .cyc_i(wbs_cyc_i & (state==rdwr) & hit & valid), .stb_i(wbs_stb_i & (state==rdwr) & hit & valid), // throttle depending on valid .cti_i(wbs_cti_i), .bte_i(wbs_bte_i), .adr_i(wbs_adr_i), .we_i (wbs_we_i), .ack_o(wbs_ack_o), .adr_o(wbs_adr), .clk(wbs_clk), .rst(wbs_rst)); `undef MODULE assign eoc = (wbs_cti_i==3'b000 | wbs_cti_i==3'b111) & wbs_ack_o; assign we = wbs_cyc_i & wbs_we_i & wbs_ack_o; end else if (wbs_mode=="B4") begin : inst_b4 end endgenerate localparam cache_mem_b_aw = (dw_s==dw_m) ? aw_slot+aw_offset : (dw_s==dw_m/2) ? aw_slot+aw_offset-1 : (dw_s==dw_m/4) ? aw_slot+aw_offset-2 : (dw_s==dw_m/8) ? aw_slot+aw_offset-3 : (dw_s==dw_m/16) ? aw_slot+aw_offset-4 : (dw_s==dw_m*2) ? aw_slot+aw_offset+1 : (dw_s==dw_m*4) ? aw_slot+aw_offset+2 : (dw_s==dw_m*8) ? aw_slot+aw_offset+3 : (dw_s==dw_m*16) ? aw_slot+aw_offset+4 : 0; `define MODULE dpram_be_2r2w `BASE`MODULE # ( .a_data_width(dw_s), .a_addr_width(aw_slot+aw_offset), .b_data_width(dw_m), .debug(debug)) cache_mem ( .d_a(wbs_dat_i), .adr_a(wbs_adr[aw_slot+aw_offset-1:0]), .be_a(wbs_sel_i), .we_a(we), .q_a(wbs_dat_o), .clk_a(wbs_clk), .d_b(wbm_dat_i), .adr_b(wbm_adr[cache_mem_b_aw-1:0]), .be_b(wbm_sel_o), .we_b(wbm_cyc_o & !wbm_we_o & wbm_ack_i), .q_b(wbm_dat_o), .clk_b(wbm_clk)); `undef MODULE always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) state <= idle; else case (state) idle: if (wbs_cyc_i) state <= rdwr; rdwr: casex ({valid, hit, dirty, eoc}) 4'b0xxx: state <= pull; 4'b11x1: state <= idle; 4'b101x: state <= push; 4'b100x: state <= pull; endcase push: if (done) state <= rdwr; pull: if (done) state <= rdwr; default: state <= idle; endcase // cdc generate if (async==1) begin : cdc0 `define MODULE cdc `BASE`MODULE cdc0 ( .start_pl(state==rdwr & (!valid | !hit)), .take_it_pl(mem_alert), .take_it_grant_pl(mem_done), .got_it_pl(done), .clk_src(wbs_clk), .rst_src(wbs_rst), .clk_dst(wbm_clk), .rst_dst(wbm_rst)); `undef MODULE end else begin : nocdc assign mem_alert = state==rdwr & (!valid | !hit); assign done = mem_done; end endgenerate // FSM generating a number of bursts 4 cycles // actual number depends on data width ratio // nr_of_wbm_burst reg [nr_of_wbm_burst_width+wbm_burst_width-1:0] cnt_rw, cnt_ack; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) cnt_rw <= {wbm_burst_width{1'b0}}; else if (wbm_cyc_o & wbm_stb_o & !wbm_stall_i) cnt_rw <= cnt_rw + 1; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) cnt_ack <= {wbm_burst_width{1'b0}}; else if (wbm_ack_i) cnt_ack <= cnt_ack + 1; generate if (nr_of_wbm_burst==1) begin : one_burst always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) phase <= wbm_wait; else case (phase) wbm_wait: if (mem_alert) if (state==push) phase <= wbm_wr; else phase <= wbm_rd; wbm_wr: if (&cnt_rw) phase <= wbm_wr_drain; wbm_wr_drain: if (&cnt_ack) phase <= wbm_rd; wbm_rd: if (&cnt_rw) phase <= wbm_rd_drain; wbm_rd_drain: if (&cnt_ack) phase <= wbm_wait; default: phase <= wbm_wait; endcase end else begin : multiple_burst always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) phase <= wbm_wait; else case (phase) wbm_wait: if (mem_alert) if (state==push) phase <= wbm_wr; else phase <= wbm_rd; wbm_wr: if (&cnt_rw[wbm_burst_width-1:0]) phase <= wbm_wr_drain; wbm_wr_drain: if (&cnt_ack) phase <= wbm_rd; else if (&cnt_ack[wbm_burst_width-1:0]) phase <= wbm_wr; wbm_rd: if (&cnt_rw[wbm_burst_width-1:0]) phase <= wbm_rd_drain; wbm_rd_drain: if (&cnt_ack) phase <= wbm_wait; else if (&cnt_ack[wbm_burst_width-1:0]) phase <= wbm_rd; default: phase <= wbm_wait; endcase end endgenerate assign mem_done = phase==wbm_rd_drain & (&cnt_ack) & wbm_ack_i; assign wbm_adr_o = (phase[2]) ? {tag, wbs_adr_slot, cnt_rw} : {wbs_adr_tag, wbs_adr_slot, cnt_rw}; assign wbm_adr = (phase[2]) ? {wbs_adr_slot, cnt_rw} : {wbs_adr_slot, cnt_ack}; assign wbm_sel_o = {dw_m/8{1'b1}}; assign wbm_cti_o = (&cnt_rw | !wbm_stb_o) ? 3'b111 : 3'b010; assign wbm_bte_o = bte; assign {wbm_we_o, wbm_stb_o, wbm_cyc_o} = phase; endmodule `endif `ifdef WB_AVALON_BRIDGE // Wishbone to avalon bridge supporting one type of burst transfer only // intended use is together with cache above // WB B4 -> pipelined avalon `define MODULE wb_avalon_bridge module `BASE`MODULE ( `undef MODULE // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, // avalon master side readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, init_done, // common clk, rst); parameter adr_width = 30; parameter dat_width = 32; parameter burst_size = 4; input [dat_width-1:0] wbs_dat_i; input [adr_width-1:0] wbs_adr_i; input [dat_width/8-1:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i; input wbs_cyc_i; input wbs_stb_i; output [dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input [dat_width-1:0] readdata; input readdatavalid; output [dat_width-1:0] writedata; output [adr_width-1:0] address; output [dat_width/8-1:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input waitrequest; input init_done; input clk, rst; // cnt1 - initiated read or writes // cnt2 - # of read or writes in pipeline reg [3:0] cnt1; reg [3:0] cnt2; reg next_state, state; localparam s0 = 1'b0; localparam s1 = 1'b1; wire eoc; always @ * begin case (state) s0: if (init_done & wbs_cyc_i) next_state <= s1; s1: default: next_state <= state; end end always @ (posedge clk or posedge rst) if (rst) state <= s0; else state <= next_state; assign eoc = state==s1 & !(read | write) & (& !waitrequest & cnt2=; always @ (posedge clk or posedge rst) if (rst) cnt1 <= 4'h0; else if (read & !waitrequest & init_done) cnt1 <= burst_size - 1; else if (write & !waitrequest & init_done) cnt1 <= cnt1 + 4'h1; else if (next_state==idle) cnt1 <= 4'h0; always @ (posedge clk or posedge rst) if (rst) cnt2 <= 4'h0; else if (read & !waitrequest & init_done) cnt2 <= burst_size - 1; else if (write & !waitrequest & init_done & ) cnt2 <= cnt1 + 4'h1; else if (next_state==idle) cnt2 <= 4'h0; reg wr_ack; always @ (posedge clk or posedge rst) if (rst) wr_ack <= 1'b0; else wr_ack <= (wbs_we_i & wbs_cyc_i & wbs_stb_i & !wbs_stall_o); // to avalon assign writedata = wbs_dat_i; assign address = wbs_adr_i; assign be = wbs_sel_i; assign write = cnt!=4'h0 & wbs_cyc_i & wbs_we_i; assign read = cnt!=4'h0 & wbs_cyc_i & !wbs_we_i; assign beginbursttransfer = state==s0 & next_state==s1; assign burstcount = burst_size; // to wishbone assign wbs_dat_o = readdata; assign wbs_ack_o = wr_ack | readdatavalid; assign wbs_stall_o = waitrequest; endmodule `endif `ifdef WB_AVALON_MEM_CACHE `define MODULE wb_avalon_mem_cache module `BASE`MODULE ( wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_cti_i, wbs_bte_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wbs_clk, wbs_rst, readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, clk, rst ); `undef MODULE // wishbone parameter wb_dat_width = 32; parameter wb_adr_width = 22; parameter wb_max_burst_width = 4; parameter wb_mode = "B4"; // avalon parameter avalon_dat_width = 32; //localparam avalon_adr_width = wb_dat_width * wb_adr_width / avalon_dat_width; localparam avalon_adr_width = (wb_dat_width==avalon_dat_width) ? wb_adr_width : (wb_dat_width==avalon_dat_width*2) ? wb_adr_width+1 : (wb_dat_width==avalon_dat_width*4) ? wb_adr_width+2 : (wb_dat_width==avalon_dat_width*8) ? wb_adr_width+3 : (wb_dat_width==avalon_dat_width*16) ? wb_adr_width+4 : (wb_dat_width==avalon_dat_width*32) ? wb_adr_width+5 : (wb_dat_width==avalon_dat_width/2) ? wb_adr_width-1 : (wb_dat_width==avalon_dat_width/4) ? wb_adr_width-2 : (wb_dat_width==avalon_dat_width/8) ? wb_adr_width-3 : (wb_dat_width==avalon_dat_width/16) ? wb_adr_width-4 : (wb_dat_width==avalon_dat_width/32) ? wb_adr_width-5 : 0; parameter avalon_burst_size = 4; // cache parameter async = 1; parameter nr_of_ways = 1; parameter aw_offset = 4; parameter aw_slot = 10; parameter valid_mem = 1; // shadow RAM parameter shadow_ram = 0; parameter shadow_ram_adr_width = 10; parameter shadow_ram_size = 1024; parameter shadow_ram_init = 2; // 0: no init, 1: from file, 2: with zero parameter shadow_ram_file = "vl_ram.v"; input [wb_dat_width-1:0] wbs_dat_i; input [wb_adr_width-1:0] wbs_adr_i; // dont include a1,a0 input [wb_dat_width/8-1:0] wbs_sel_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [wb_dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input wbs_clk, wbs_rst; input [avalon_dat_width-1:0] readdata; input readdatavalid; output [avalon_dat_width-1:0] writedata; output [avalon_adr_width-1:0] address; output [avalon_dat_width/8-1:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input waitrequest; input clk, rst; `define DAT_WIDTH wb_dat_width `define ADR_WIDTH wb_adr_width `define WB wb1 `include "wb_wires.v" `undef DAT_WIDTH `undef ADR_WIDTH `define DAT_WIDTH avalon_dat_width `define ADR_WIDTH avalon_adr_width `define WB wb2 `include "wb_wires.v" `undef DAT_WIDTH `undef ADR_WIDTH `define MODULE wb_shadow_ram `BASE`MODULE # ( .dat_width(wb_dat_width), .mode(wb_mode), .max_burst_width(wb_max_burst_width), .shadow_mem_adr_width(shadow_ram_adr_width), .shadow_mem_size(shadow_ram_size), .shadow_mem_init(shadow_ram_init), .shadow_mem_file(shadow_ram_file), .main_mem_adr_width(wb_adr_width)) shadow_ram0 ( .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i), .wbs_cti_i(wbs_cti_i), .wbs_bte_i(wbs_bte_i), .wbs_sel_i(wbs_sel_i), .wbs_we_i(wbs_we_i), .wbs_stb_i(wbs_stb_i), .wbs_cyc_i(wbs_cyc_i), .wbs_dat_o(wbs_dat_o), .wbs_ack_o(wbs_ack_o), .wbs_stall_o(wbs_stall_o), .wbm_dat_o(wb1_dat_o), .wbm_adr_o(wb1_adr_o), .wbm_cti_o(wb1_cti_o), .wbm_bte_o(wb1_bte_o), .wbm_sel_o(wb1_sel_o), .wbm_we_o(wb1_we_o), .wbm_stb_o(wb1_stb_o), .wbm_cyc_o(wb1_cyc_o), .wbm_dat_i(wb1_dat_i), .wbm_ack_i(wb1_ack_i), .wbm_stall_i(wb1_stall_i), .wb_clk(wbs_clk), .wb_rst(wbs_rst)); `undef MODULE `define MODULE wb_cache `BASE`MODULE # ( .dw_s(wb_dat_width), .aw_s(wb_adr_width), .dw_m(avalon_dat_width), .wbs_mode(wb_mode), .wbs_max_burst_width(wb_max_burst_width), .async(async), .nr_of_ways(nr_of_ways), .aw_offset(aw_offset), .aw_slot(aw_slot), .valid_mem(valid_mem)) cache0 ( .wbs_dat_i(wb1_dat_o), .wbs_adr_i(wb1_adr_o), .wbs_sel_i(wb1_sel_o), .wbs_cti_i(wb1_cti_o), .wbs_bte_i(wb1_bte_o), .wbs_we_i(wb1_we_o), .wbs_stb_i(wb1_stb_o), .wbs_cyc_i(wb1_cyc_o), .wbs_dat_o(wb1_dat_i), .wbs_ack_o(wb1_ack_i), .wbs_stall_o(wb1_stall_i), .wbs_clk(wbs_clk), .wbs_rst(wbs_rst), .wbm_dat_o(wb2_dat_o), .wbm_adr_o(wb2_adr_o), .wbm_sel_o(wb2_sel_o), .wbm_cti_o(wb2_cti_o), .wbm_bte_o(wb2_bte_o), .wbm_we_o(wb2_we_o), .wbm_stb_o(wb2_stb_o), .wbm_cyc_o(wb2_cyc_o), .wbm_dat_i(wb2_dat_i), .wbm_ack_i(wb2_ack_i), .wbm_stall_i(wb2_stall_i), .wbm_clk(clk), .wbm_rst(rst)); `undef MODULE `define MODULE wb_avalon_bridge `BASE`MODULE # ( .adr_width(avalon_adr_width), .dat_width(avalon_dat_width), .burst_size(avalon_burst_size)) bridge0 ( // wishbone slave side .wbs_dat_i(wb2_dat_o), .wbs_adr_i(wb2_adr_o), .wbs_sel_i(wb2_sel_o), .wbs_bte_i(wb2_bte_o), .wbs_cti_i(wb2_cti_o), .wbs_we_i(wb2_we_o), .wbs_cyc_i(wb2_cyc_o), .wbs_stb_i(wb2_stb_o), .wbs_dat_o(wb2_dat_i), .wbs_ack_o(wb2_ack_i), .wbs_stall_o(wb2_stall_i), // avalon master side .readdata(readdata), .readdatavalid(readdatavalid), .address(address), .read(read), .be(be), .write(write), .burstcount(burstcount), .writedata(writedata), .waitrequest(waitrequest), .beginbursttransfer(beginbursttransfer), // common .clk(clk), .rst(rst)); `undef MODULE endmodule `endif `ifdef WB_SDR_SDRAM `define MODULE wb_sdr_sdram module `BASE`MODULE ( `undef MODULE // wisbone i/f dat_i, adr_i, sel_i, we_i, cyc_i, stb_i, dat_o, ack_o, stall_o, // SDR SDRAM ba, a, cmd, cke, cs_n, dqm, dq_i, dq_o, dq_oe, // system clk, rst); // external data bus size parameter dat_size = 16; // memory geometry parameters parameter ba_size = 2; parameter row_size = 13; parameter col_size = 9; parameter cl = 2; // memory timing parameters parameter tRFC = 9; parameter tRP = 2; parameter tRCD = 2; parameter tMRD = 2; // LMR // [12:10] reserved // [9] WB, write burst; 0 - programmed burst length, 1 - single location // [8:7] OP Mode, 2'b00 // [6:4] CAS Latency; 3'b010 - 2, 3'b011 - 3 // [3] BT, Burst Type; 1'b0 - sequential, 1'b1 - interleaved // [2:0] Burst length; 3'b000 - 1, 3'b001 - 2, 3'b010 - 4, 3'b011 - 8, 3'b111 - full page localparam init_wb = 1'b1; localparam init_cl = (cl==2) ? 3'b010 : 3'b011; localparam init_bt = 1'b0; localparam init_bl = 3'b000; input [dat_size-1:0] dat_i; input [ba_size+col_size+row_size-1:0] adr_i; input [dat_size/8-1:0] sel_i; input we_i, cyc_i, stb_i; output [dat_size-1:0] dat_o; output ack_o; output reg stall_o; output [ba_size-1:0] ba; output reg [12:0] a; output reg [2:0] cmd; // {ras,cas,we} output cke, cs_n; output reg [dat_size/8-1:0] dqm; output [dat_size-1:0] dq_o; output reg dq_oe; input [dat_size-1:0] dq_i; input clk, rst; wire [ba_size-1:0] bank; wire [row_size-1:0] row; wire [col_size-1:0] col; wire [0:31] shreg; wire ref_cnt_zero; reg refresh_req; wire ack_rd, rd_ack_emptyflag; wire ack_wr; // to keep track of open rows per bank reg [row_size-1:0] open_row[0:3]; reg [0:3] open_ba; reg current_bank_closed, current_row_open; parameter rfr_length = 10; parameter rfr_wrap_value = 1010; parameter [2:0] cmd_nop = 3'b111, cmd_act = 3'b011, cmd_rd = 3'b101, cmd_wr = 3'b100, cmd_pch = 3'b010, cmd_rfr = 3'b001, cmd_lmr = 3'b000; // ctrl FSM `define FSM_INIT 3'b000 `define FSM_IDLE 3'b001 `define FSM_RFR 3'b010 `define FSM_ADR 3'b011 `define FSM_PCH 3'b100 `define FSM_ACT 3'b101 `define FSM_RW 3'b111 assign cke = 1'b1; assign cs_n = 1'b0; reg [2:0] state, next; function [12:0] a10_fix; input [col_size-1:0] a; integer i; begin for (i=0;i<13;i=i+1) begin if (i<10) if (i<col_size) a10_fix[i] = a[i]; else a10_fix[i] = 1'b0; else if (i==10) a10_fix[i] = 1'b0; else if (i<col_size) a10_fix[i] = a[i-1]; else a10_fix[i] = 1'b0; end end endfunction assign {bank,row,col} = adr_i; always @ (posedge clk or posedge rst) if (rst) state <= `FSM_INIT; else state <= next; always @* begin next = state; case (state) `FSM_INIT: if (shreg[3+tRP+tRFC+tRFC+tMRD]) next = `FSM_IDLE; `FSM_IDLE: if (refresh_req) next = `FSM_RFR; else if (cyc_i & stb_i & rd_ack_emptyflag) next = `FSM_ADR; `FSM_RFR: if (shreg[tRP+tRFC-2]) next = `FSM_IDLE; // take away two cycles because no cmd will be issued in idle and adr `FSM_ADR: if (current_bank_closed) next = `FSM_ACT; else if (current_row_open) next = `FSM_RW; else next = `FSM_PCH; `FSM_PCH: if (shreg[tRP]) next = `FSM_ACT; `FSM_ACT: if (shreg[tRCD]) next = `FSM_RW; `FSM_RW: if (!stb_i) next = `FSM_IDLE; endcase end // counter `define MODULE cnt_shreg_clear `BASE`MODULE # ( .length(32)) `undef MODULE cnt0 ( .clear(state!=next), .q(shreg), .rst(rst), .clk(clk)); // ba, a, cmd // outputs dependent on state vector always @ (*) begin {a,cmd} = {13'd0,cmd_nop}; dqm = 2'b11; dq_oe = 1'b0; stall_o = 1'b1; case (state) `FSM_INIT: if (shreg[3]) begin {a,cmd} = {13'b0010000000000, cmd_pch}; end else if (shreg[3+tRP] | shreg[3+tRP+tRFC]) {a,cmd} = {13'd0, cmd_rfr}; else if (shreg[3+tRP+tRFC+tRFC]) {a,cmd} = {3'b000,init_wb,2'b00,init_cl,init_bt,init_bl,cmd_lmr}; `FSM_RFR: if (shreg[0]) {a,cmd} = {13'b0010000000000, cmd_pch}; else if (shreg[tRP]) {a,cmd} = {13'd0, cmd_rfr}; `FSM_PCH: if (shreg[0]) {a,cmd} = {13'd0,cmd_pch}; `FSM_ACT: if (shreg[0]) {a[row_size-1:0],cmd} = {row,cmd_act}; `FSM_RW: begin if (we_i) cmd = cmd_wr; else cmd = cmd_rd; if (we_i) dqm = ~sel_i; else dqm = 2'b00; if (we_i) dq_oe = 1'b1; a = a10_fix(col); stall_o = 1'b0; end endcase end assign ba = bank; // precharge individual bank A10=0 // precharge all bank A10=1 genvar i; generate for (i=0;i<2<<ba_size-1;i=i+1) begin : open_ba_logic always @ (posedge clk or posedge rst) if (rst) {open_ba[i],open_row[i]} <= {1'b0,{row_size{1'b0}}}; else if (cmd==cmd_pch & (a[10] | bank==i)) open_ba[i] <= 1'b0; else if (cmd==cmd_act & bank==i) {open_ba[i],open_row[i]} <= {1'b1,row}; end endgenerate // bank and row open ? always @ (posedge clk or posedge rst) if (rst) {current_bank_closed, current_row_open} <= {1'b1, 1'b0}; else {current_bank_closed, current_row_open} <= {!(open_ba[bank]), open_row[bank]==row}; // refresh counter `define MODULE cnt_lfsr_zq `BASE`MODULE # ( .length(rfr_length), .wrap_value (rfr_wrap_value)) ref_counter0( .zq(ref_cnt_zero), .rst(rst), .clk(clk)); `undef MODULE always @ (posedge clk or posedge rst) if (rst) refresh_req <= 1'b0; else if (ref_cnt_zero) refresh_req <= 1'b1; else if (state==`FSM_RFR) refresh_req <= 1'b0; assign dat_o = dq_i; assign ack_wr = (state==`FSM_RW & we_i); `define MODULE delay_emptyflag `BASE`MODULE # ( .depth(cl+2)) delay0 ( .d(state==`FSM_RW & stb_i & !we_i), .q(ack_rd), .emptyflag(rd_ack_emptyflag), .clk(clk), .rst(rst)); `undef MODULE assign ack_o = ack_rd | ack_wr; assign dq_o = dat_i; endmodule `endif `ifdef WB_SDR_SDRAM_CTRL `define MODULE wb_sdr_sdram_ctrl module `BASE`MODULE ( // WB i/f wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, // SDR SDRAM mem_ba, mem_a, mem_cmd, mem_cke, mem_cs_n, mem_dqm, mem_dq_i, mem_dq_o, mem_dq_oe, // system wb_clk, wb_rst, mem_clk, mem_rst); `undef MODULE // WB slave parameter wbs_dat_width = 32; parameter wbs_adr_width = 24; parameter wbs_mode = "B3"; parameter wbs_max_burst_width = 4; // Shadow RAM parameter shadow_mem_adr_width = 10; parameter shadow_mem_size = 1024; parameter shadow_mem_init = 2; parameter shadow_mem_file = "vl_ram.v"; // Cache parameter cache_async = 1; // wbs_clk != wbm_clk parameter cache_nr_of_ways = 1; parameter cache_aw_offset = 4; // 4 => 16 words per cache line parameter cache_aw_slot = 10; parameter cache_valid_mem = 0; parameter cache_debug = 0; // SDRAM parameters parameter mem_dat_size = 16; parameter mem_ba_size = 2; parameter mem_row_size = 13; parameter mem_col_size = 9; parameter mem_cl = 2; parameter mem_tRFC = 9; parameter mem_tRP = 2; parameter mem_tRCD = 2; parameter mem_tMRD = 2; parameter mem_rfr_length = 10; parameter mem_rfr_wrap_value = 1010; input [wbs_dat_width-1:0] wbs_dat_i; input [wbs_adr_width-1:0] wbs_adr_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input [wbs_dat_width/8-1:0] wbs_sel_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [wbs_dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; output [mem_ba_size-1:0] mem_ba; output reg [12:0] mem_a; output reg [2:0] mem_cmd; // {ras,cas,we} output mem_cke, mem_cs_n; output reg [mem_dat_size/8-1:0] mem_dqm; output [mem_dat_size-1:0] mem_dq_o; output reg mem_dq_oe; input [mem_dat_size-1:0] mem_dq_i; input wb_clk, wb_rst, mem_clk, mem_rst; // wbm1 wire [wbs_dat_width-1:0] wbm1_dat_o; wire [wbs_adr_width-1:0] wbm1_adr_o; wire [2:0] wbm1_cti_o; wire [1:0] wbm1_bte_o; wire [wbs_dat_width/8-1:0] wbm1_sel_o; wire wbm1_we_o, wbm1_stb_o, wbm1_cyc_o; wire [wbs_dat_width-1:0] wbm1_dat_i; wire wbm1_ack_i, wbm1_stall_i; // wbm2 wire [mem_dat_size-1:0] wbm2_dat_o; wire [mem_ba_size+mem_row_size+mem_col_size-1:0] wbm2_adr_o; wire [2:0] wbm2_cti_o; wire [1:0] wbm2_bte_o; wire [mem_dat_size/8-1:0] wbm2_sel_o; wire wbm2_we_o, wbm2_stb_o, wbm2_cyc_o; wire [mem_dat_size-1:0] wbm2_dat_i; wire wbm2_ack_i, wbm2_stall_i; `define MODULE wb_shadow_ram `BASE`MODULE # ( .shadow_mem_adr_width(shadow_mem_adr_width), .shadow_mem_size(shadow_mem_size), .shadow_mem_init(shadow_mem_init), .shadow_mem_file(shadow_mem_file), .main_mem_adr_width(wbs_adr_width), .dat_width(wbs_dat_width), .mode(wbs_mode), .max_burst_width(wbs_max_burst_width) ) shadow_ram0 ( .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i), .wbs_cti_i(wbs_cti_i), .wbs_bte_i(wbs_bte_i), .wbs_sel_i(wbs_sel_i), .wbs_we_i (wbs_we_i), .wbs_stb_i(wbs_stb_i), .wbs_cyc_i(wbs_cyc_i), .wbs_dat_o(wbs_dat_o), .wbs_ack_o(wbs_ack_o), .wbs_stall_o(wbs_stall_o), .wbm_dat_o(wbm1_dat_o), .wbm_adr_o(wbm1_adr_o), .wbm_cti_o(wbm1_cti_o), .wbm_bte_o(wbm1_bte_o), .wbm_sel_o(wbm1_sel_o), .wbm_we_o(wbm1_we_o), .wbm_stb_o(wbm1_stb_o), .wbm_cyc_o(wbm1_cyc_o), .wbm_dat_i(wbm1_dat_i), .wbm_ack_i(wbm1_ack_i), .wbm_stall_i(wbm1_stall_i), .wb_clk(wb_clk), .wb_rst(wb_rst) ); `undef MODULE `define MODULE wb_cache `BASE`MODULE # ( .dw_s(wbs_dat_width), .aw_s(wbs_adr_width), .dw_m(mem_dat_size), .wbs_max_burst_width(cache_aw_offset), .wbs_mode(wbs_mode), .async(cache_async), .nr_of_ways(cache_nr_of_ways), .aw_offset(cache_aw_offset), .aw_slot(cache_aw_slot), .valid_mem(cache_valid_mem) ) cache0 ( .wbs_dat_i(wbm1_dat_o), .wbs_adr_i(wbm1_adr_o), .wbs_sel_i(wbm1_sel_o), .wbs_cti_i(wbm1_cti_o), .wbs_bte_i(wbm1_bte_o), .wbs_we_i (wbm1_we_o), .wbs_stb_i(wbm1_stb_o), .wbs_cyc_i(wbm1_cyc_o), .wbs_dat_o(wbm1_dat_i), .wbs_ack_o(wbm1_ack_i), .wbs_stall_o(wbm1_stall_i), .wbs_clk(wb_clk), .wbs_rst(wb_rst), .wbm_dat_o(wbm2_dat_o), .wbm_adr_o(wbm2_adr_o), .wbm_sel_o(wbm2_sel_o), .wbm_cti_o(wbm2_cti_o), .wbm_bte_o(wbm2_bte_o), .wbm_we_o (wbm2_we_o), .wbm_stb_o(wbm2_stb_o), .wbm_cyc_o(wbm2_cyc_o), .wbm_dat_i(wbm2_dat_i), .wbm_ack_i(wbm2_ack_i), .wbm_stall_i(wbm2_stall_i), .wbm_clk(mem_clk), .wbm_rst(mem_rst) ); `undef MODULE `define MODULE wb_sdr_sdram `BASE`MODULE # ( .dat_size(mem_dat_size), .ba_size(mem_ba_size), .row_size(mem_row_size), .col_size(mem_col_size), .cl(mem_cl), .tRFC(mem_tRFC), .tRP(mem_tRP), .tRCD(mem_tRCD), .tMRD(mem_tMRD), .rfr_length(mem_rfr_length), .rfr_wrap_value(mem_rfr_wrap_value) ) ctrl0( // wisbone i/f .dat_i(wbm2_dat_o), .adr_i(wbm2_adr_o), .sel_i(wbm2_sel_o), .we_i (wbm2_we_o), .cyc_i(wbm2_cyc_o), .stb_i(wbm2_stb_o), .dat_o(wbm2_dat_i), .ack_o(wbm2_ack_i), .stall_o(wbm2_stall_i), // SDR SDRAM .ba(mem_ba), .a(mem_a), .cmd(mem_cmd), .cke(mem_cke), .cs_n(mem_cs_n), .dqm(mem_dqm), .dq_i(mem_dq_i), .dq_o(mem_dq_o), .dq_oe(mem_dq_oe), // system .clk(mem_clk), .rst(mem_rst) ); `undef MODULE endmodule `endif
Go to most recent revision | Compare with Previous | Blame | View Log