URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [zipcpu.v] - Rev 209
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: zipcpu.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core //{{{ // Purpose: This is the top level module holding the core of the Zip CPU // together. The Zip CPU is designed to be as simple as possible. // (actual implementation aside ...) The instruction set is about as // RISC as you can get, with only 26 instruction types currently supported. // (There are still 8-instruction Op-Codes reserved for floating point, // and 5 which can be used for transactions not requiring registers.) // Please see the accompanying spec.pdf file for a description of these // instructions. // // All instructions are 32-bits wide. All bus accesses, both address and // data, are 32-bits over a wishbone bus. // // The Zip CPU is fully pipelined with the following pipeline stages: // // 1. Prefetch, returns the instruction from memory. // // 2. Instruction Decode // // 3. Read Operands // // 4. Apply Instruction // // 4. Write-back Results // // Further information about the inner workings of this CPU, such as // what causes pipeline stalls, may be found in the spec.pdf file. (The // documentation within this file had become out of date and out of sync // with the spec.pdf, so look to the spec.pdf for accurate and up to date // information.) // // // In general, the pipelining is controlled by three pieces of logic // per stage: _ce, _stall, and _valid. _valid means that the stage // holds a valid instruction. _ce means that the instruction from the // previous stage is to move into this one, and _stall means that the // instruction from the previous stage may not move into this one. // The difference between these control signals allows individual stages // to propagate instructions independently. In general, the logic works // as: // // // assign (n)_ce = (n-1)_valid && (!(n)_stall) // // // always @(posedge i_clk) // if ((i_reset)||(clear_pipeline)) // (n)_valid = 0 // else if (n)_ce // (n)_valid = 1 // else if (n+1)_ce // (n)_valid = 0 // // assign (n)_stall = ( (n-1)_valid && ( pipeline hazard detection ) ) // || ( (n)_valid && (n+1)_stall ); // // and ... // // always @(posedge i_clk) // if (n)_ce // (n)_variable = ... whatever logic for this stage // // Note that a stage can stall even if no instruction is loaded into // it. // //}}} // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2019, Gisselquist Technology, LLC //{{{ // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. //}}} // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // `define CPU_SUB_OP 4'h0 // also a compare instruction `define CPU_AND_OP 4'h1 // also a test instruction `define CPU_BREV_OP 4'h8 `define CPU_MOV_OP 4'hd // `define CPU_CC_REG 4'he `define CPU_PC_REG 4'hf `define CPU_CLRCACHE_BIT 14 // Set to clear the I-cache, automatically clears `define CPU_PHASE_BIT 13 // Set if we are executing the latter half of a CIS `define CPU_FPUERR_BIT 12 // Floating point error flag, set on error `define CPU_DIVERR_BIT 11 // Divide error flag, set on divide by zero `define CPU_BUSERR_BIT 10 // Bus error flag, set on error `define CPU_TRAP_BIT 9 // User TRAP has taken place `define CPU_ILL_BIT 8 // Illegal instruction `define CPU_BREAK_BIT 7 `define CPU_STEP_BIT 6 // Will step one (or two CIS) instructions `define CPU_GIE_BIT 5 `define CPU_SLEEP_BIT 4 // Compile time defines // `include "cpudefs.v" // // module zipcpu(i_clk, i_reset, i_interrupt, // Debug interface i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data, o_dbg_stall, o_dbg_reg, o_dbg_cc, o_break, // CPU interface to the wishbone bus o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel, i_wb_ack, i_wb_stall, i_wb_data, i_wb_err, // Accounting/CPU usage interface o_op_stall, o_pf_stall, o_i_count `ifdef DEBUG_SCOPE , o_debug // , o_dcache_debug `endif ); // Parameters //{{{ parameter [31:0] RESET_ADDRESS=32'h0100000; parameter ADDRESS_WIDTH=30, LGICACHE=12; `ifdef OPT_MULTIPLY parameter IMPLEMENT_MPY = `OPT_MULTIPLY; `else parameter IMPLEMENT_MPY = 0; `endif `ifdef OPT_DIVIDE parameter [0:0] IMPLEMENT_DIVIDE = 1; `else parameter [0:0] IMPLEMENT_DIVIDE = 0; `endif `ifdef OPT_IMPLEMENT_FPU parameter [0:0] IMPLEMENT_FPU = 1; `else parameter [0:0] IMPLEMENT_FPU = 0; `endif `ifdef OPT_EARLY_BRANCHING parameter [0:0] EARLY_BRANCHING = 1; `else parameter [0:0] EARLY_BRANCHING = 0; `endif `ifdef OPT_CIS parameter [0:0] OPT_CIS = 1'b1; `else parameter [0:0] OPT_CIS = 1'b0; `endif `ifdef OPT_NO_USERMODE localparam [0:0] OPT_NO_USERMODE = 1'b1; `else localparam [0:0] OPT_NO_USERMODE = 1'b0; `endif `ifdef OPT_PIPELINED parameter [0:0] OPT_PIPELINED = 1'b1; `else parameter [0:0] OPT_PIPELINED = 1'b0; `endif `ifdef OPT_PIPELINED_BUS_ACCESS localparam [0:0] OPT_PIPELINED_BUS_ACCESS = (OPT_PIPELINED); `else localparam [0:0] OPT_PIPELINED_BUS_ACCESS = 1'b0; `endif localparam [0:0] OPT_MEMPIPE = OPT_PIPELINED_BUS_ACCESS; parameter [0:0] IMPLEMENT_LOCK=1; localparam [0:0] OPT_LOCK=(IMPLEMENT_LOCK)&&(OPT_PIPELINED); `ifdef OPT_DCACHE parameter OPT_LGDCACHE = 10; `else parameter OPT_LGDCACHE = 0; `endif localparam [0:0] OPT_DCACHE = (OPT_LGDCACHE > 0); parameter [0:0] WITH_LOCAL_BUS = 1'b1; localparam AW=ADDRESS_WIDTH; localparam [(AW-1):0] RESET_BUS_ADDRESS = RESET_ADDRESS[(AW+1):2]; parameter F_LGDEPTH=8; //}}} // I/O declarations //{{{ input wire i_clk, i_reset, i_interrupt; // Debug interface -- inputs input wire i_halt, i_clear_pf_cache; input wire [4:0] i_dbg_reg; input wire i_dbg_we; input wire [31:0] i_dbg_data; // Debug interface -- outputs output wire o_dbg_stall; output reg [31:0] o_dbg_reg; output reg [3:0] o_dbg_cc; output wire o_break; // Wishbone interface -- outputs output wire o_wb_gbl_cyc, o_wb_gbl_stb; output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we; output wire [(AW-1):0] o_wb_addr; output wire [31:0] o_wb_data; output wire [3:0] o_wb_sel; // Wishbone interface -- inputs input wire i_wb_ack, i_wb_stall; input wire [31:0] i_wb_data; input wire i_wb_err; // Accounting outputs ... to help us count stalls and usage output wire o_op_stall; output wire o_pf_stall; output wire o_i_count; // `ifdef DEBUG_SCOPE output reg [31:0] o_debug; // output wire [31:0] o_dcache_debug; `endif //}}} // Registers // // The distributed RAM style comment is necessary on the // SPARTAN6 with XST to prevent XST from oversimplifying the register // set and in the process ruining everything else. It basically // optimizes logic away, to where it no longer works. The logic // as described herein will work, this just makes sure XST implements // that logic. // (* ram_style = "distributed" *) reg [31:0] regset [0:(OPT_NO_USERMODE)? 15:31]; // Condition codes // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z reg [3:0] flags, iflags; wire [14:0] w_uflags, w_iflags; reg break_en, step, sleep, r_halted; wire break_pending, trap, gie, ubreak, pending_interrupt; wire w_clear_icache, ill_err_u; reg ill_err_i; reg ibus_err_flag; wire ubus_err_flag; wire idiv_err_flag, udiv_err_flag; wire ifpu_err_flag, ufpu_err_flag; wire ihalt_phase, uhalt_phase; // The master chip enable wire master_ce, master_stall; // // // PIPELINE STAGE #1 :: Prefetch // Variable declarations // //{{{ reg [(AW+1):0] pf_pc; wire [(AW+1):0] pf_request_address, pf_instruction_pc; reg new_pc; wire clear_pipeline; reg dcd_stalled; wire pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err; wire [(AW-1):0] pf_addr; wire [31:0] pf_data; wire [31:0] pf_instruction; wire pf_valid, pf_gie, pf_illegal; wire pf_stalled; wire pf_new_pc; `ifdef FORMAL wire [31:0] f_dcd_insn_word; wire f_dcd_insn_gie; reg [31:0] f_op_insn_word; reg [31:0] f_alu_insn_word; `endif assign clear_pipeline = new_pc; //}}} // // // PIPELINE STAGE #2 :: Instruction Decode // Variable declarations // // //{{{ reg op_valid /* verilator public_flat */, op_valid_mem, op_valid_alu; reg op_valid_div, op_valid_fpu; wire op_stall, dcd_ce, dcd_phase; wire [3:0] dcd_opn; wire [4:0] dcd_A, dcd_B, dcd_R, dcd_preA, dcd_preB; wire dcd_Acc, dcd_Bcc, dcd_Apc, dcd_Bpc, dcd_Rcc, dcd_Rpc; wire [3:0] dcd_F; wire dcd_wR, dcd_rA, dcd_rB, dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_wF, dcd_gie, dcd_break, dcd_lock, dcd_pipe, dcd_ljmp; wire dcd_valid; wire [AW+1:0] dcd_pc /* verilator public_flat */; wire [31:0] dcd_I; wire dcd_zI; // true if dcd_I == 0 wire dcd_A_stall, dcd_B_stall, dcd_F_stall; wire dcd_illegal; wire dcd_early_branch, dcd_early_branch_stb; wire [(AW+1):0] dcd_branch_pc; wire dcd_sim; wire [22:0] dcd_sim_immv; wire prelock_stall; wire cc_invalid_for_dcd; wire pending_sreg_write; //}}} // // // PIPELINE STAGE #3 :: Read Operands // Variable declarations // // // //{{{ // Now, let's read our operands reg [4:0] alu_reg; wire [3:0] op_opn; reg [4:0] op_R; reg op_Rcc; reg [4:0] op_Aid, op_Bid; reg op_rA, op_rB; reg [31:0] r_op_Av, r_op_Bv; reg [(AW+1):0] op_pc; wire [31:0] w_op_Av, w_op_Bv, op_Av, op_Bv; reg [31:0] w_pcB_v, w_pcA_v; reg [31:0] w_op_BnI; reg op_wR, op_wF; wire op_gie; wire [3:0] op_Fl; reg [6:0] r_op_F; wire [7:0] op_F; wire op_ce, op_phase, op_pipe; reg r_op_break; reg [3:0] r_op_opn; wire w_op_valid; wire [8:0] w_cpu_info; // Some pipeline control wires reg op_illegal; wire op_break; wire op_lock; `ifdef VERILATOR reg op_sim /* verilator public_flat */; reg [22:0] op_sim_immv /* verilator public_flat */; `else wire op_sim = 1'b0; `endif //}}} // // // PIPELINE STAGE #4 :: ALU / Memory // Variable declarations // // //{{{ wire [(AW+1):0] alu_pc; reg r_alu_pc_valid, mem_pc_valid; wire alu_pc_valid; wire alu_phase; wire alu_ce /* verilator public_flat */, alu_stall; wire [31:0] alu_result; wire [3:0] alu_flags; wire alu_valid, alu_busy; wire set_cond; reg alu_wR, alu_wF; wire alu_gie, alu_illegal; wire mem_ce, mem_stalled; wire mem_pipe_stalled; wire mem_valid, mem_ack, mem_stall, mem_err, bus_err, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we; wire [4:0] mem_wreg; wire mem_busy, mem_rdbusy; wire [(AW-1):0] mem_addr; wire [31:0] mem_data, mem_result; wire [3:0] mem_sel; wire div_ce, div_error, div_busy, div_valid; wire [31:0] div_result; wire [3:0] div_flags; wire fpu_ce, fpu_error, fpu_busy, fpu_valid; wire [31:0] fpu_result; wire [3:0] fpu_flags; reg adf_ce_unconditional; wire bus_lock; reg dbgv, dbg_clear_pipe; reg [31:0] dbg_val; assign div_ce = (op_valid_div)&&(adf_ce_unconditional)&&(set_cond); assign fpu_ce = (IMPLEMENT_FPU)&&(op_valid_fpu)&&(adf_ce_unconditional)&&(set_cond); //}}} // // // PIPELINE STAGE #5 :: Write-back // Variable declarations // //{{{ wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc, wr_write_scc, wr_write_ucc; wire [4:0] wr_reg_id; wire [31:0] wr_gpreg_vl, wr_spreg_vl; wire w_switch_to_interrupt, w_release_from_interrupt; reg [(AW+1):0] ipc; wire [(AW+1):0] upc; reg last_write_to_cc; wire cc_write_hold; reg r_clear_icache; //}}} `ifdef FORMAL wire [F_LGDEPTH-1:0] f_gbl_arb_nreqs, f_gbl_arb_nacks, f_gbl_arb_outstanding, f_lcl_arb_nreqs, f_lcl_arb_nacks, f_lcl_arb_outstanding, f_gbl_mem_nreqs, f_gbl_mem_nacks, f_gbl_mem_outstanding, f_lcl_mem_nreqs, f_lcl_mem_nacks, f_lcl_mem_outstanding, f_gbl_pf_nreqs, f_gbl_pf_nacks, f_gbl_pf_outstanding, f_lcl_pf_nreqs, f_lcl_pf_nacks, f_lcl_pf_outstanding, f_mem_nreqs, f_mem_nacks, f_mem_outstanding; reg f_pf_nreqs, f_pf_nacks, f_pf_outstanding; wire f_mem_pc; `endif // // MASTER: clock enable. // assign master_ce = ((!i_halt)||(alu_phase)) &&(!cc_write_hold)&&(!o_break)&&(!sleep); // // PIPELINE STAGE #1 :: Prefetch // Calculate stall conditions // // These are calculated externally, within the prefetch module. // // // PIPELINE STAGE #2 :: Instruction Decode // Calculate stall conditions always @(*) if (OPT_PIPELINED) dcd_stalled = (dcd_valid)&&(op_stall); else dcd_stalled = (!master_ce)||(ill_err_i)||(dcd_valid)||(op_valid) ||(ibus_err_flag)||(idiv_err_flag) ||(alu_busy)||(div_busy)||(fpu_busy)||(mem_busy); // // PIPELINE STAGE #3 :: Read Operands // Calculate stall conditions //{{{ generate if (OPT_PIPELINED) begin : GEN_OP_STALL reg r_cc_invalid_for_dcd; always @(posedge i_clk) r_cc_invalid_for_dcd <= (set_cond)&&(op_valid) &&((op_wF)||((op_wR)&&(op_R[4:0] == { op_gie, `CPU_CC_REG }))) ||((r_cc_invalid_for_dcd) &&((alu_busy)||(mem_rdbusy)||(div_busy)||(fpu_busy))); assign cc_invalid_for_dcd = r_cc_invalid_for_dcd; reg r_pending_sreg_write; initial r_pending_sreg_write = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_pending_sreg_write <= 1'b0; else if (((adf_ce_unconditional)||(mem_ce)) &&(set_cond)&&(!op_illegal) &&(op_wR) &&(op_R[3:1] == 3'h7) &&(op_R[4:0] != { gie, 4'hf })) r_pending_sreg_write <= 1'b1; else if ((!mem_rdbusy)&&(!alu_busy)) r_pending_sreg_write <= 1'b0; assign pending_sreg_write = r_pending_sreg_write; assign op_stall = (op_valid)&&( //{{{ // Only stall if we're loaded w/validins and the // next stage is accepting our instruction (!adf_ce_unconditional)&&(!mem_ce) ) ||(dcd_valid)&&( // Stall if we need to wait for an operand A // to be ready to read (dcd_A_stall) // Likewise for B, also includes logic // regarding immediate offset (register must // be in register file if we need to add to // an immediate) ||(dcd_B_stall) // Or if we need to wait on flags to work on the // CC register ||(dcd_F_stall) ); //}}} assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall); end else begin // !OPT_PIPELINED assign op_stall = 1'b0; // (o_break)||(pending_interrupt); assign op_ce = ((dcd_valid)||(dcd_early_branch))&&(!op_stall); assign pending_sreg_write = 1'b0; assign cc_invalid_for_dcd = 1'b0; // Verilator lint_off UNUSED wire [1:0] pipe_unused; assign pipe_unused = { cc_invalid_for_dcd, pending_sreg_write }; // Verilator lint_on UNUSED end endgenerate // BUT ... op_ce is too complex for many of the data operations. So // let's make their circuit enable code simpler. In particular, if // op_ doesn't need to be preserved, we can change it all we want // ... right? The clear_pipeline code, for example, really only needs // to determine whether op_valid is true. // assign op_change_data_ce = (!op_stall); //}}} // // PIPELINE STAGE #4 :: ALU / Memory // Calculate stall conditions // //{{{ // 1. Basic stall is if the previous stage is valid and the next is // busy. // 2. Also stall if the prior stage is valid and the master clock enable // is de-selected // 3. Stall if someone on the other end is writing the CC register, // since we don't know if it'll put us to sleep or not. // 4. Last case: Stall if we would otherwise move a break instruction // through the ALU. Break instructions are not allowed through // the ALU. generate if (OPT_PIPELINED) begin : GEN_ALU_STALL assign alu_stall = (((master_stall)||(mem_rdbusy))&&(op_valid_alu)) //Case 1&2 ||(wr_reg_ce)&&(wr_write_cc); // assign // alu_ce = (master_ce)&&(op_valid_alu)&&(!alu_stall) // &&(!clear_pipeline)&&(!op_illegal) // &&(!pending_sreg_write) // &&(!alu_sreg_stall); assign alu_ce = (adf_ce_unconditional)&&(op_valid_alu); // Verilator lint_off unused wire unused_alu_stall = alu_stall; // Verilator lint_on unused end else begin assign alu_stall = (master_stall); //assign alu_ce = (master_ce)&&(op_valid_alu) // &&(!clear_pipeline) // &&(!alu_stall); assign alu_ce = (adf_ce_unconditional)&&(op_valid_alu); // Verilator lint_off unused wire unused_alu_stall = alu_stall; // Verilator lint_on unused end endgenerate // // // Note: if you change the conditions for mem_ce, you must also change // alu_pc_valid. // assign mem_ce = (master_ce)&&(op_valid_mem)&&(!mem_stalled) &&(!clear_pipeline); generate if (OPT_PIPELINED_BUS_ACCESS) begin assign mem_stalled = (master_stall)||((op_valid_mem)&&( (mem_pipe_stalled) ||(bus_err)||(div_error) ||((!op_pipe)&&(mem_busy)) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce) &&((wr_write_pc)||(wr_write_cc))))); end else if (OPT_PIPELINED) begin assign mem_stalled = (master_stall)||((op_valid_mem)&&( (bus_err)||(div_error)||(mem_busy) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce) &&((wr_write_pc)||(wr_write_cc))))); end else begin assign mem_stalled = (master_stall); end endgenerate //}}} assign master_stall = (!master_ce)||(!op_valid)||(ill_err_i) ||(ibus_err_flag)||(idiv_err_flag) ||(pending_interrupt)&&(!alu_phase) ||(alu_busy)||(div_busy)||(fpu_busy)||(op_break) ||((OPT_PIPELINED)&&( ((OPT_LOCK)&&(prelock_stall)) ||((mem_busy)&&(op_illegal)) ||((mem_busy)&&(op_valid_div)) ||(alu_illegal)||(o_break))); // ALU, DIV, or FPU CE ... equivalent to the OR of all three of these always @(*) if (OPT_PIPELINED) adf_ce_unconditional = (!master_stall)&&(!op_valid_mem)&&(!mem_rdbusy) &&((!mem_busy)||(!op_wR)||(op_R[4:1] != { gie, 3'h7})); else adf_ce_unconditional = (!master_stall)&&(op_valid)&&(!op_valid_mem); // // // PIPELINE STAGE #1 :: Prefetch // // //{{{ assign pf_stalled = (dcd_stalled)||(dcd_phase); assign pf_new_pc = (new_pc)||((dcd_early_branch_stb)&&(!clear_pipeline)); assign pf_request_address = ((dcd_early_branch_stb)&&(!clear_pipeline)) ? dcd_branch_pc:pf_pc; assign pf_gie = gie; `ifdef FORMAL abs_prefetch #(ADDRESS_WIDTH) //{{{ pf(i_clk, (i_reset), pf_new_pc, w_clear_icache, (!pf_stalled), pf_request_address, pf_instruction, pf_instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, pf_illegal); always @(*) begin f_pf_nreqs = 0; f_pf_nacks = 0; f_pf_outstanding = 0; end //}}} `else `ifdef OPT_SINGLE_FETCH prefetch #(ADDRESS_WIDTH) //{{{ pf(i_clk, (i_reset), pf_new_pc, w_clear_icache, (!pf_stalled), pf_request_address, pf_instruction, pf_instruction_pc, pf_valid, pf_illegal, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data); //}}} `else `ifdef OPT_DOUBLE_FETCH dblfetch #(ADDRESS_WIDTH) //{{{ pf(i_clk, i_reset, pf_new_pc, w_clear_icache, (!pf_stalled), pf_request_address, pf_instruction, pf_instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, pf_illegal); //}}} `else // Not single fetch and not double fetch `ifdef OPT_TRADITIONAL_PFCACHE pfcache #(LGICACHE, ADDRESS_WIDTH) //{{{ pf(i_clk, i_reset, pf_new_pc, w_clear_icache, // dcd_pc, (!pf_stalled), pf_request_address, pf_instruction, pf_instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, pf_illegal); //}}} `else pipefetch #({RESET_BUS_ADDRESS, 2'b00}, LGICACHE, ADDRESS_WIDTH) //{{{ pf(i_clk, i_reset, pf_new_pc, w_clear_icache, (!pf_stalled), (new_pc)?pf_pc:dcd_branch_pc, pf_instruction, pf_instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, (mem_cyc_lcl)||(mem_cyc_gbl), pf_illegal); //}}} `endif // OPT_TRADITIONAL_CACHE `endif // OPT_DOUBLE_FETCH `endif // OPT_SINGLE_FETCH `endif // FORMAL //}}} // // // PIPELINE STAGE #2 :: Instruction Decode // // //{{{ assign dcd_ce =((OPT_PIPELINED)&&(!dcd_valid))||(!dcd_stalled); idecode #(.ADDRESS_WIDTH(AW), .OPT_MPY((IMPLEMENT_MPY!=0)? 1'b1:1'b0), .OPT_PIPELINED(OPT_PIPELINED), .OPT_EARLY_BRANCHING(EARLY_BRANCHING), .OPT_DIVIDE(IMPLEMENT_DIVIDE), .OPT_FPU(IMPLEMENT_FPU), .OPT_LOCK(OPT_LOCK), .OPT_OPIPE(OPT_PIPELINED_BUS_ACCESS), .OPT_NO_USERMODE(OPT_NO_USERMODE), `ifdef VERILATOR .OPT_SIM(1'b1), `else .OPT_SIM(1'b0), `endif .OPT_CIS(OPT_CIS)) instruction_decoder(i_clk, (i_reset)||(clear_pipeline)||(w_clear_icache), dcd_ce, dcd_stalled, pf_instruction, pf_gie, pf_instruction_pc, pf_valid, pf_illegal, dcd_valid, dcd_phase, dcd_illegal, dcd_pc, { dcd_Rcc, dcd_Rpc, dcd_R }, { dcd_Acc, dcd_Apc, dcd_A }, { dcd_Bcc, dcd_Bpc, dcd_B }, dcd_preA, dcd_preB, dcd_I, dcd_zI, dcd_F, dcd_wF, dcd_opn, dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_break, dcd_lock, dcd_wR,dcd_rA, dcd_rB, dcd_early_branch, dcd_early_branch_stb, dcd_branch_pc, dcd_ljmp, dcd_pipe, dcd_sim, dcd_sim_immv `ifdef FORMAL , f_dcd_insn_word, f_dcd_insn_gie `endif ); assign dcd_gie = pf_gie; //}}} // // // PIPELINE STAGE #3 :: Read Operands (Registers) // // //{{{ generate if (OPT_PIPELINED_BUS_ACCESS) begin : GEN_OP_PIPE reg r_op_pipe; initial r_op_pipe = 1'b0; // To be a pipeable operation, there must be // two valid adjacent instructions // Both must be memory instructions // Both must be writes, or both must be reads // Both operations must be to the same identical address, // or at least a single (one) increment above that // address // // However ... we need to know this before this clock, hence // this is calculated in the instruction decoder. always @(posedge i_clk) if ((clear_pipeline)||(i_halt)) r_op_pipe <= 1'b0; else if (op_ce) r_op_pipe <= (dcd_pipe)&&(op_valid_mem); else if ((wr_reg_ce)&&(wr_reg_id == op_Bid[4:0])) r_op_pipe <= 1'b0; else if (mem_ce) // Clear us any time an op_ is clocked in r_op_pipe <= 1'b0; assign op_pipe = r_op_pipe; end else begin assign op_pipe = 1'b0; end endgenerate // `define NO_DISTRIBUTED_RAM `ifdef NO_DISTRIBUTED_RAM reg [31:0] pre_rewrite_value, pre_op_Av, pre_op_Bv; reg pre_rewrite_flag_A, pre_rewrite_flag_B; always @(posedge i_clk) if (dcd_ce) begin pre_rewrite_flag_A <= (wr_reg_ce)&&(dcd_preA == wr_reg_id); pre_rewrite_flag_B <= (wr_reg_ce)&&(dcd_preB == wr_reg_id); pre_rewrite_value <= wr_gpreg_vl; end generate if (OPT_NO_USERMODE) begin always @(posedge i_clk) if (dcd_ce) begin pre_op_Av <= regset[dcd_preA[3:0]]; pre_op_Bv <= regset[dcd_preB[3:0]]; end end else begin always @(posedge i_clk) if (dcd_ce) begin pre_op_Av <= regset[dcd_preA]; pre_op_Bv <= regset[dcd_preB]; end end endgenerate assign w_op_Av = (pre_rewrite_flag_A) ? pre_rewrite_value : pre_op_Av; assign w_op_Bv = (pre_rewrite_flag_B) ? pre_rewrite_value : pre_op_Bv; `else generate if (OPT_NO_USERMODE) begin assign w_op_Av = regset[dcd_A[3:0]]; assign w_op_Bv = regset[dcd_B[3:0]]; end else begin assign w_op_Av = regset[dcd_A]; assign w_op_Bv = regset[dcd_B]; end endgenerate // verilator lint_off UNUSED wire [9:0] unused_prereg_addrs; assign unused_prereg_addrs = { dcd_preA, dcd_preB }; // verilator lint_on UNUSED `endif assign w_cpu_info = { //{{{ 1'b1, (IMPLEMENT_MPY >0)? 1'b1:1'b0, (IMPLEMENT_DIVIDE >0)? 1'b1:1'b0, (IMPLEMENT_FPU >0)? 1'b1:1'b0, OPT_PIPELINED, `ifdef OPT_TRADITIONAL_CACHE 1'b1, `else 1'b0, `endif (EARLY_BRANCHING > 0)? 1'b1:1'b0, OPT_PIPELINED_BUS_ACCESS, OPT_CIS }; //}}} always @(*) if ((OPT_NO_USERMODE)||(dcd_A[4] == dcd_gie)) w_pcA_v[(AW+1):0] = { dcd_pc[AW+1:2], 2'b00 }; else w_pcA_v[(AW+1):0] = { upc[(AW+1):2], uhalt_phase, 1'b0 }; generate if (AW < 30) always @(*) w_pcA_v[31:(AW+2)] = 0; endgenerate generate if (OPT_PIPELINED) begin : OPV initial op_R = 0; initial op_Aid = 0; initial op_Bid = 0; initial op_rA = 0; initial op_rB = 0; initial op_Rcc = 0; always @(posedge i_clk) if (op_ce) begin op_R <= dcd_R; op_Aid <= dcd_A; op_Bid <= dcd_B; op_rA <= (dcd_rA)&&(!dcd_early_branch)&&(!dcd_illegal); op_rB <= (dcd_rB)&&(!dcd_early_branch)&&(!dcd_illegal); op_Rcc <= (dcd_Rcc)&&(dcd_wR)&&(dcd_R[4]==dcd_gie); end end else begin always @(*) begin op_R = dcd_R; op_Aid = dcd_A; op_Bid = dcd_B; op_rA = dcd_rA; op_rB = dcd_rB; op_Rcc = (dcd_Rcc)&&(dcd_wR)&&(dcd_R[4]==dcd_gie); end end endgenerate always @(posedge i_clk) if ((!OPT_PIPELINED)||(op_ce)) begin if ((OPT_PIPELINED)&&(wr_reg_ce)&&(wr_reg_id == dcd_A)) r_op_Av <= wr_gpreg_vl; else if (dcd_Apc) r_op_Av <= w_pcA_v; else if (dcd_Acc) r_op_Av <= { w_cpu_info, w_op_Av[22:16], 1'b0, (dcd_A[4])?w_uflags:w_iflags }; else r_op_Av <= w_op_Av; end else if (OPT_PIPELINED) begin if ((wr_reg_ce)&&(wr_reg_id == op_Aid)&&(op_rA)) r_op_Av <= wr_gpreg_vl; end always @(*) if ((OPT_NO_USERMODE)||(dcd_B[4] == dcd_gie)) w_pcB_v[(AW+1):0] = { dcd_pc[AW+1:2], 2'b00 }; else w_pcB_v[(AW+1):0] = { upc[(AW+1):2], uhalt_phase, 1'b0 }; generate if (AW < 30) always @(*) w_pcB_v[31:(AW+2)] = 0; endgenerate always @(*) if (!dcd_rB) w_op_BnI = 0; else if ((OPT_PIPELINED)&&(wr_reg_ce)&&(wr_reg_id == dcd_B)) w_op_BnI = wr_gpreg_vl; else if (dcd_Bcc) w_op_BnI = { w_cpu_info, w_op_Bv[22:16], 1'b0, (dcd_B[4]) ? w_uflags : w_iflags }; else w_op_BnI = w_op_Bv; always @(posedge i_clk) if ((!OPT_PIPELINED)||(op_ce)) begin if ((dcd_Bpc)&&(dcd_rB)) r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 }; else r_op_Bv <= w_op_BnI + dcd_I; end else if ((OPT_PIPELINED)&&(op_rB) &&(wr_reg_ce)&&(op_Bid == wr_reg_id)) r_op_Bv <= wr_gpreg_vl; // The logic here has become more complex than it should be, no thanks // to Xilinx's Vivado trying to help. The conditions are supposed to // be two sets of four bits: the top bits specify what bits matter, the // bottom specify what those top bits must equal. However, two of // conditions check whether bits are on, and those are the only two // conditions checking those bits. Therefore, Vivado complains that // these two bits are redundant. Hence the convoluted expression // below, arriving at what we finally want in the (now wire net) // op_F. always @(posedge i_clk) if ((!OPT_PIPELINED)||(op_ce)) // Cannot do op_change_data_ce here since op_F depends // upon being either correct for a valid op, or correct // for the last valid op begin // Set the flag condition codes, bit order is [3:0]=VNCZ case(dcd_F[2:0]) 3'h0: r_op_F <= 7'h00; // Always 3'h1: r_op_F <= 7'h11; // Z 3'h2: r_op_F <= 7'h44; // LT 3'h3: r_op_F <= 7'h22; // C 3'h4: r_op_F <= 7'h08; // V 3'h5: r_op_F <= 7'h10; // NE 3'h6: r_op_F <= 7'h40; // GE (!N) 3'h7: r_op_F <= 7'h20; // NC endcase end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value } assign op_F = { r_op_F[3], r_op_F[6:0] }; assign w_op_valid = (!clear_pipeline)&&(dcd_valid) &&(!dcd_ljmp)&&(!dcd_early_branch); initial op_valid = 1'b0; initial op_valid_alu = 1'b0; initial op_valid_mem = 1'b0; initial op_valid_div = 1'b0; initial op_valid_fpu = 1'b0; always @(posedge i_clk) if ((i_reset)||(clear_pipeline)) begin op_valid <= 1'b0; op_valid_alu <= 1'b0; op_valid_mem <= 1'b0; op_valid_div <= 1'b0; op_valid_fpu <= 1'b0; end else if (op_ce) begin // Do we have a valid instruction? // The decoder may vote to stall one of its // instructions based upon something we currently // have in our queue. This instruction must then // move forward, and get a stall cycle inserted. // Hence, the test on dcd_stalled here. If we must // wait until our operands are valid, then we aren't // valid yet until then. if (OPT_PIPELINED || !op_valid) begin op_valid <= (w_op_valid)||(dcd_early_branch); op_valid_alu <= (w_op_valid)&&((dcd_ALU)||(dcd_illegal)); op_valid_mem <= (dcd_M)&&(!dcd_illegal) &&(w_op_valid); op_valid_div <= (IMPLEMENT_DIVIDE)&&(dcd_DIV)&&(!dcd_illegal)&&(w_op_valid); op_valid_fpu <= (IMPLEMENT_FPU)&&(dcd_FP)&&(!dcd_illegal)&&(w_op_valid); end else if ((adf_ce_unconditional)||(mem_ce)) begin op_valid <= 1'b0; op_valid_alu <= 1'b0; op_valid_mem <= 1'b0; op_valid_div <= 1'b0; op_valid_fpu <= 1'b0; end end else if ((adf_ce_unconditional)||(mem_ce)) begin op_valid <= 1'b0; op_valid_alu <= 1'b0; op_valid_mem <= 1'b0; op_valid_div <= 1'b0; op_valid_fpu <= 1'b0; end // Here's part of our debug interface. When we recognize a break // instruction, we set the op_break flag. That'll prevent this // instruction from entering the ALU, and cause an interrupt before // this instruction. Thus, returning to this code will cause the // break to repeat and continue upon return. To get out of this // condition, replace the break instruction with what it is supposed // to be, step through it, and then replace it back. In this fashion, // a debugger can step through code. // assign w_op_break = (dcd_break)&&(r_dcd_I[15:0] == 16'h0001); initial r_op_break = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_op_break <= 1'b0; else if ((OPT_PIPELINED)&&(op_ce)) r_op_break <= (dcd_valid)&&(dcd_break)&&(!dcd_illegal); else if ((!OPT_PIPELINED)&&(dcd_valid)) r_op_break <= (dcd_break)&&(!dcd_illegal); assign op_break = r_op_break; generate if ((!OPT_PIPELINED)||(!OPT_LOCK)) begin assign op_lock = 1'b0; // Verilator lint_off UNUSED wire dcd_lock_unused; assign dcd_lock_unused = dcd_lock; // Verilator lint_on UNUSED end else // if (IMPLEMENT_LOCK != 0) begin : OPLOCK reg r_op_lock; initial r_op_lock = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_op_lock <= 1'b0; else if (op_ce) r_op_lock <= (dcd_valid)&&(dcd_lock) &&(!dcd_illegal); assign op_lock = r_op_lock; end endgenerate initial op_illegal = 1'b0; always @(posedge i_clk) if ((i_reset)||(clear_pipeline)) op_illegal <= 1'b0; else if (OPT_PIPELINED) begin if (op_ce) op_illegal <= (dcd_valid)&&(!dcd_ljmp) &&(!dcd_early_branch)&&(dcd_illegal); end else if (!OPT_PIPELINED) begin if (dcd_valid) op_illegal <= (!dcd_ljmp)&&(!dcd_early_branch)&&(dcd_illegal); end always @(posedge i_clk) if ((!OPT_PIPELINED)||(op_ce)) op_wF <= (dcd_wF)&&((!dcd_Rcc)||(!dcd_wR)) &&(!dcd_early_branch); generate if ((OPT_PIPELINED)||(EARLY_BRANCHING)) begin always @(posedge i_clk) if (op_ce) op_wR <= (dcd_wR)&&(!dcd_early_branch); end else begin always @(*) op_wR = (dcd_wR); end endgenerate `ifdef VERILATOR `ifdef SINGLE_FETCH always @(*) begin op_sim = dcd_sim; op_sim_immv = dcd_sim_immv; end `else always @(posedge i_clk) if (op_ce) begin op_sim <= dcd_sim; op_sim_immv <= dcd_sim_immv; end `endif `endif generate if ((OPT_PIPELINED)||(EARLY_BRANCHING)) begin : SET_OP_PC initial op_pc[0] = 1'b0; always @(posedge i_clk) if (op_ce) op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc; end else begin : SET_OP_PC always @(*) op_pc = dcd_pc; end endgenerate generate if (!OPT_PIPELINED) begin always @(*) r_op_opn = dcd_opn; end else begin always @(posedge i_clk) if (op_ce) begin // Which ALU operation? Early branches are // unimplemented moves r_op_opn <= ((dcd_early_branch)||(dcd_illegal)) ? `CPU_MOV_OP : dcd_opn; // opM <= dcd_M; // Is this a memory operation? // What register will these results be written into? end end endgenerate assign op_opn = r_op_opn; assign op_gie = gie; assign op_Fl = (op_gie)?(w_uflags[3:0]):(w_iflags[3:0]); generate if (OPT_CIS) begin : OPT_CIS_OP_PHASE reg r_op_phase; initial r_op_phase = 1'b0; always @(posedge i_clk) if ((i_reset)||(clear_pipeline)) r_op_phase <= 1'b0; else if (op_ce) r_op_phase <= (dcd_phase)&&((!dcd_wR)||(!dcd_Rpc)); assign op_phase = r_op_phase; end else begin : OPT_NOCIS_OP_PHASE assign op_phase = 1'b0; // verilator lint_off UNUSED wire OPT_CIS_dcdRpc; assign OPT_CIS_dcdRpc = dcd_Rpc; // verilator lint_on UNUSED end endgenerate // This is tricky. First, the PC and Flags registers aren't kept in // register set but in special registers of their own. So step one // is to select the right register. Step to is to replace that // register with the results of an ALU or memory operation, if such // results are now available. Otherwise, we'd need to insert a wait // state of some type. // // The alternative approach would be to define some sort of // op_stall wire, which would stall any upstream stage. // We'll create a flag here to start our coordination. Once we // define this flag to something other than just plain zero, then // the stalls will already be in place. generate if (OPT_PIPELINED) begin assign op_Av = ((wr_reg_ce)&&(wr_reg_id == op_Aid)) ? wr_gpreg_vl : r_op_Av; end else begin assign op_Av = r_op_Av; end endgenerate // Stall if we have decoded an instruction that will read register A // AND ... something that may write a register is running // AND (series of conditions here ...) // The operation might set flags, and we wish to read the // CC register // OR ... (No other conditions) generate if (OPT_PIPELINED) begin assign dcd_A_stall = (dcd_rA) // &&(dcd_valid) is checked for elsewhere &&((op_valid)||(mem_rdbusy) ||(div_busy)||(fpu_busy)) &&(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Acc)) ||((dcd_rA)&&(dcd_Acc)&&(cc_invalid_for_dcd)); end else begin // There are no pipeline hazards, if we aren't pipelined assign dcd_A_stall = 1'b0; end endgenerate assign op_Bv = ((OPT_PIPELINED)&&(wr_reg_ce) &&(wr_reg_id == op_Bid)&&(op_rB)) ? wr_gpreg_vl: r_op_Bv; generate if (OPT_PIPELINED) begin // Stall if we have decoded an instruction that will read register B // AND ... something that may write a (unknown) register is running // AND (series of conditions here ...) // The operation might set flags, and we wish to read the // CC register // OR the operation might set register B, and we still need // a clock to add the offset to it assign dcd_B_stall = (dcd_rB) // &&(dcd_valid) is checked for elsewhere //{{{ // If the op stage isn't valid, yet something // is running, then it must have been valid. // We'll use the last values from that stage // (op_wR, op_wF, op_R) in our logic below. &&((op_valid)||(mem_rdbusy) ||(div_busy)||(fpu_busy)||(alu_busy)) &&( // Okay, what happens if the result register // from instruction 1 becomes the input for // instruction two, *and* there's an immediate // offset in instruction two? In that case, we // need an extra clock between the two // instructions to calculate the base plus // offset. // // What if instruction 1 (or before) is in a // memory pipeline? We may no longer know what // the register was! We will then need to // blindly wait. We'll temper this only waiting // if we're not piping this new instruction. // If we were piping, the pipe logic in the // decode circuit has told us that the hazard // is clear, so we're okay then. // ((!dcd_zI)&&( ((op_R == dcd_B)&&(op_wR)) ||((mem_rdbusy)&&(!dcd_pipe)) ||(((alu_busy)||(div_busy))&&(alu_reg == dcd_B)) ||((wr_reg_ce)&&(wr_reg_id[3:1] == 3'h7)) )) // Stall following any instruction that will // set the flags, if we're going to need the // flags (CC) register for op_B. ||(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Bcc)) // Stall on any ongoing memory operation that // will write to op_B -- captured above // ||((mem_busy)&&(!mem_we)&&(mem_last_reg==dcd_B)&&(!dcd_zI)) ) ||((dcd_rB)&&(dcd_Bcc)&&(cc_invalid_for_dcd)); //}}} assign dcd_F_stall = ((!dcd_F[3]) //{{{ ||((dcd_rA)&&(dcd_A[3:1]==3'h7) &&(dcd_A[4:0] != { gie, 4'hf})) ||((dcd_rB)&&(dcd_B[3:1]==3'h7)) &&(dcd_B[4:0] != { gie, 4'hf})) &&(((op_valid)&&(op_wR) &&(op_R[3:1]==3'h7) &&(op_R[4:0]!={gie, 4'hf})) ||(pending_sreg_write)); // &&(dcd_valid) is checked for elsewhere //}}} end else begin // No stalls without pipelining, 'cause how can you have a pipeline // hazard without the pipeline? assign dcd_B_stall = 1'b0; assign dcd_F_stall = 1'b0; end endgenerate //}}} // // // PIPELINE STAGE #4 :: Apply Instruction // // // ALU cpuops #(IMPLEMENT_MPY) doalu(i_clk, ((i_reset)||(clear_pipeline)), //{{{ alu_ce, op_opn, op_Av, op_Bv, alu_result, alu_flags, alu_valid, alu_busy); //}}} // Divide //{{{ generate if (IMPLEMENT_DIVIDE != 0) begin : DIVIDE `ifdef FORMAL `define DIVIDE_MODULE abs_div `else `define DIVIDE_MODULE div `endif `DIVIDE_MODULE thedivide(i_clk, ((i_reset)||(clear_pipeline)), div_ce, op_opn[0], op_Av, op_Bv, div_busy, div_valid, div_error, div_result, div_flags); end else begin assign div_error = 1'b0; // Can't be high unless div_valid assign div_busy = 1'b0; assign div_valid = 1'b0; assign div_result= 32'h00; assign div_flags = 4'h0; // Make verilator happy here // verilator lint_off UNUSED wire unused_divide; assign unused_divide = div_ce; // verilator lint_on UNUSED end endgenerate //}}} // (Non-existent) FPU //{{{ generate if (IMPLEMENT_FPU != 0) begin : FPU // // sfpu thefpu(i_clk, i_reset, fpu_ce, op_opn[2:0], // op_Av, op_Bv, fpu_busy, fpu_valid, fpu_err, fpu_result, // fpu_flags); // assign fpu_error = 1'b0; // Must only be true if fpu_valid assign fpu_busy = 1'b0; assign fpu_valid = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end else begin assign fpu_error = 1'b0; assign fpu_busy = 1'b0; assign fpu_valid = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end endgenerate //}}} assign set_cond = ((op_F[7:4]&op_Fl[3:0])==op_F[3:0]); initial alu_wF = 1'b0; initial alu_wR = 1'b0; generate if (OPT_PIPELINED) begin always @(posedge i_clk) if (i_reset) begin alu_wR <= 1'b0; alu_wF <= 1'b0; end else if (alu_ce) begin // alu_reg <= op_R; alu_wR <= (op_wR)&&(set_cond)&&(!op_illegal); alu_wF <= (op_wF)&&(set_cond)&&(!op_illegal); end else if (!alu_busy) begin // These are strobe signals, so clear them if not // set for any particular clock alu_wR <= (r_halted)&&(i_dbg_we); alu_wF <= 1'b0; end end else begin always @(posedge i_clk) alu_wR <= (op_wR)&&(set_cond)&&(!op_illegal); always @(posedge i_clk) alu_wF <= (op_wF)&&(set_cond)&&(!op_illegal); end endgenerate generate if (OPT_CIS) begin : GEN_ALU_PHASE reg r_alu_phase; initial r_alu_phase = 1'b0; always @(posedge i_clk) if ((i_reset)||(clear_pipeline)) r_alu_phase <= 1'b0; else if (((adf_ce_unconditional)||(mem_ce))&&(op_valid)) r_alu_phase <= op_phase; else if ((adf_ce_unconditional)||(mem_ce)) r_alu_phase <= 1'b0; assign alu_phase = r_alu_phase; end else begin assign alu_phase = 1'b0; end endgenerate generate if (OPT_PIPELINED) begin always @(posedge i_clk) if (adf_ce_unconditional) alu_reg <= op_R; else if ((r_halted)&&(i_dbg_we)) alu_reg <= i_dbg_reg; end else begin always @(posedge i_clk) if ((r_halted)&&(i_dbg_we)) alu_reg <= i_dbg_reg; else alu_reg <= op_R; end endgenerate // // DEBUG Register write access starts here // //{{{ initial dbgv = 1'b0; always @(posedge i_clk) if (i_reset) dbgv <= 0; else dbgv <= (i_dbg_we)&&(r_halted); always @(posedge i_clk) dbg_val <= i_dbg_data; always @(posedge i_clk) if ((i_reset)||(clear_pipeline)) dbg_clear_pipe <= 0; else if ((i_dbg_we)&&(r_halted)) begin if (!OPT_PIPELINED) dbg_clear_pipe <= 1'b1; else if ((i_dbg_reg == op_Bid)&&(op_rB)) dbg_clear_pipe <= 1'b1; else if (i_dbg_reg[3:1] == 3'h7) dbg_clear_pipe <= 1'b1; else dbg_clear_pipe <= 1'b0; end else if ((!OPT_PIPELINED)&&(i_clear_pf_cache)) dbg_clear_pipe <= 1'b1; else dbg_clear_pipe <= 1'b0; assign alu_gie = gie; //}}} generate if (OPT_PIPELINED) begin : GEN_ALU_PC reg [(AW+1):0] r_alu_pc; initial r_alu_pc = 0; always @(posedge i_clk) if (i_reset) r_alu_pc <= 0; else if ((adf_ce_unconditional) ||((master_ce)&&(op_valid_mem) &&(!clear_pipeline)&&(!mem_stalled))) r_alu_pc <= op_pc; assign alu_pc = r_alu_pc; end else begin assign alu_pc = op_pc; end endgenerate generate if (OPT_PIPELINED) begin : SET_ALU_ILLEGAL reg r_alu_illegal; initial r_alu_illegal = 0; always @(posedge i_clk) if (clear_pipeline) r_alu_illegal <= 1'b0; else if (adf_ce_unconditional) r_alu_illegal <= op_illegal; else r_alu_illegal <= 1'b0; assign alu_illegal = (r_alu_illegal); end else begin : SET_ALU_ILLEGAL assign alu_illegal = op_illegal; end endgenerate initial r_alu_pc_valid = 1'b0; initial mem_pc_valid = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_alu_pc_valid <= 1'b0; else if ((adf_ce_unconditional)&&(!op_phase)) r_alu_pc_valid <= 1'b1; else if (((!alu_busy)&&(!div_busy)&&(!fpu_busy))||(clear_pipeline)) r_alu_pc_valid <= 1'b0; assign alu_pc_valid = (r_alu_pc_valid)&&((!alu_busy)&&(!div_busy)&&(!fpu_busy)); always @(posedge i_clk) if (i_reset) mem_pc_valid <= 1'b0; else mem_pc_valid <= (mem_ce); // Bus lock logic //{{{ generate if ((OPT_PIPELINED)&&(!OPT_LOCK)) begin : BUSLOCK reg r_prelock_stall; initial r_prelock_stall = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_prelock_stall <= 1'b0; else if ((op_valid)&&(op_lock)&&(op_ce)) r_prelock_stall <= 1'b1; else if ((op_valid)&&(dcd_valid)&&(pf_valid)) r_prelock_stall <= 1'b0; assign prelock_stall = r_prelock_stall; reg r_prelock_primed; initial r_prelock_primed = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_prelock_primed <= 1'b0; else if (r_prelock_stall) r_prelock_primed <= 1'b1; else if ((adf_ce_unconditional)||(mem_ce)) r_prelock_primed <= 1'b0; reg [1:0] r_bus_lock; initial r_bus_lock = 2'b00; always @(posedge i_clk) if (clear_pipeline) r_bus_lock <= 2'b00; else if ((op_valid)&&((adf_ce_unconditional)||(mem_ce))) begin if (r_prelock_primed) r_bus_lock <= 2'b10; else if (r_bus_lock != 2'h0) r_bus_lock <= r_bus_lock + 2'b11; end assign bus_lock = |r_bus_lock; end else begin assign prelock_stall = 1'b0; assign bus_lock = 1'b0; end endgenerate //}}} // Memory interface //{{{ generate if (OPT_DCACHE) begin : MEM_DCACHE dcache #(.LGCACHELEN(OPT_LGDCACHE), .ADDRESS_WIDTH(AW), .LGNLINES(OPT_LGDCACHE-3), .OPT_LOCAL_BUS(WITH_LOCAL_BUS), .OPT_PIPE(OPT_MEMPIPE), .OPT_LOCK(OPT_LOCK) `ifdef FORMAL , .OPT_FIFO_DEPTH(2) , .F_LGDEPTH(F_LGDEPTH) `endif ) docache(i_clk, i_reset, ///{{{ (mem_ce)&&(set_cond), bus_lock, (op_opn[2:0]), op_Bv, op_Av, op_R, mem_busy, mem_pipe_stalled, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, i_wb_data `ifdef FORMAL , f_mem_nreqs, f_mem_nacks, f_mem_outstanding, f_mem_pc `endif // , o_dcache_debug ); ///}}} end else begin : NO_CACHE if (OPT_PIPELINED_BUS_ACCESS) begin : MEM pipemem #(.ADDRESS_WIDTH(AW), .IMPLEMENT_LOCK(OPT_LOCK), .WITH_LOCAL_BUS(WITH_LOCAL_BUS) `ifdef FORMAL , .OPT_MAXDEPTH(4'h3), .F_LGDEPTH(F_LGDEPTH) `endif ) domem(i_clk,i_reset, ///{{{ (mem_ce)&&(set_cond), bus_lock, (op_opn[2:0]), op_Bv, op_Av, op_R, mem_busy, mem_pipe_stalled, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, i_wb_data `ifdef FORMAL , f_mem_nreqs, f_mem_nacks, f_mem_outstanding, f_mem_pc `endif ); //}}} end else begin : MEM memops #(.ADDRESS_WIDTH(AW), .IMPLEMENT_LOCK(OPT_LOCK), .WITH_LOCAL_BUS(WITH_LOCAL_BUS) `ifdef FORMAL , .F_LGDEPTH(F_LGDEPTH) `endif // F_LGDEPTH ) domem(i_clk,i_reset, //{{{ (mem_ce)&&(set_cond), bus_lock, (op_opn[2:0]), op_Bv, op_Av, op_R, mem_busy, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, i_wb_data `ifdef FORMAL , f_mem_nreqs, f_mem_nacks, f_mem_outstanding `endif ); `ifdef FORMAL assign f_mem_pc = 1'b0; `endif //}}} assign mem_pipe_stalled = 1'b0; end end endgenerate assign mem_rdbusy = (mem_busy)&&((!OPT_PIPELINED)||(!mem_we)); // Either the prefetch or the instruction gets the memory bus, but // never both. wbdblpriarb #(.DW(32),.AW(AW) `ifdef FORMAL ,.F_LGDEPTH(F_LGDEPTH), .F_MAX_STALL(2), .F_MAX_ACK_DELAY(2) `endif // FORMAL ) pformem(i_clk, i_reset, //{{{ // Memory access to the arbiter, priority position mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, // Prefetch access to the arbiter // // At a first glance, we might want something like: // // pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, 4'hf, // // However, we know that the prefetch will not generate any // writes. Therefore, the write specific lines (mem_data and // mem_sel) can be shared with the memory in order to ease // timing and LUT usage. pf_cyc,1'b0,pf_stb, 1'b0, pf_we, pf_addr, mem_data, mem_sel, pf_ack, pf_stall, pf_err, // Common wires, in and out, of the arbiter o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel, i_wb_ack, i_wb_stall, i_wb_err `ifdef FORMAL ,f_gbl_arb_nreqs, f_gbl_arb_nacks, f_gbl_arb_outstanding, f_lcl_arb_nreqs, f_lcl_arb_nacks, f_lcl_arb_outstanding, f_gbl_mem_nreqs, f_gbl_mem_nacks, f_gbl_mem_outstanding, f_lcl_mem_nreqs, f_lcl_mem_nacks, f_lcl_mem_outstanding, f_gbl_pf_nreqs, f_gbl_pf_nacks, f_gbl_pf_outstanding, f_lcl_pf_nreqs, f_lcl_pf_nacks, f_lcl_pf_outstanding `endif ); //}}} //}}} // // // // // // // // // PIPELINE STAGE #5 :: Write-back results // //{{{ // // This stage is not allowed to stall. If results are ready to be // written back, they are written back at all cost. Sleepy CPU's // won't prevent write back, nor debug modes, halting the CPU, nor // anything else. Indeed, the (master_ce) bit is only as relevant // as knowinig something is available for writeback. // // Write back to our generic register set ... // When shall we write back? On one of two conditions // Note that the flags needed to be checked before issuing the // bus instruction, so they don't need to be checked here. // Further, alu_wR includes (set_cond), so we don't need to // check for that here either. assign wr_reg_ce = (dbgv)||(mem_valid) ||((!clear_pipeline)&&(!alu_illegal) &&(((alu_wR)&&(alu_valid)) ||((div_valid)&&(!div_error)) ||((fpu_valid)&&(!fpu_error)))); // Which register shall be written? // COULD SIMPLIFY THIS: by adding three bits to these registers, // One or PC, one for CC, and one for GIE match // Note that the alu_reg is the register to write on a divide or // FPU operation. generate if (OPT_NO_USERMODE) begin assign wr_reg_id[3:0] = (mem_valid) ? mem_wreg[3:0] : alu_reg[3:0]; assign wr_reg_id[4] = 1'b0; end else begin assign wr_reg_id = (mem_valid) ? mem_wreg : alu_reg; end endgenerate // Are we writing to the CC register? assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG); assign wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG}); assign wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG}); // Are we writing to the PC? assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); // What value to write? assign wr_gpreg_vl = ((mem_valid) ? mem_result :((div_valid|fpu_valid)) ? ((div_valid) ? div_result:fpu_result) :((dbgv) ? dbg_val : alu_result)); assign wr_spreg_vl = ((mem_valid) ? mem_result :((dbgv) ? dbg_val : alu_result)); generate if (OPT_NO_USERMODE) begin : SET_REGISTERS always @(posedge i_clk) if (wr_reg_ce) regset[{1'b0,wr_reg_id[3:0]}] <= wr_gpreg_vl; end else begin : SET_REGISTERS always @(posedge i_clk) if (wr_reg_ce) regset[wr_reg_id] <= wr_gpreg_vl; end endgenerate // // Write back to the condition codes/flags register ... // When shall we write to our flags register? alu_wF already // includes the set condition ... assign wr_flags_ce = (alu_wF)&&((alu_valid) ||(div_valid)||(fpu_valid)) &&(!clear_pipeline)&&(!alu_illegal); assign w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag, udiv_err_flag, ubus_err_flag, trap, ill_err_u, ubreak, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; assign w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag, idiv_err_flag, ibus_err_flag, trap, ill_err_i, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(!alu_gie))?alu_flags:iflags }; // What value to write? always @(posedge i_clk) // If explicitly writing the register itself if ((wr_reg_ce)&&(wr_write_ucc)) flags <= wr_gpreg_vl[3:0]; // Otherwise if we're setting the flags from an ALU operation else if ((wr_flags_ce)&&(alu_gie)) flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags : alu_flags); always @(posedge i_clk) if ((wr_reg_ce)&&(wr_write_scc)) iflags <= wr_gpreg_vl[3:0]; else if ((wr_flags_ce)&&(!alu_gie)) iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags : alu_flags); // The 'break' enable bit. This bit can only be set from supervisor // mode. It control what the CPU does upon encountering a break // instruction. // // The goal, upon encountering a break is that the CPU should stop and // not execute the break instruction, choosing instead to enter into // either interrupt mode or halt first. // if ((break_en) AND (break_instruction)) // user mode or not // HALT CPU // else if (break_instruction) // only in user mode // set an interrupt flag, set the user break bit, // go to supervisor mode, allow supervisor to step the CPU. // Upon a CPU halt, any break condition will be reset. The // external debugger will then need to deal with whatever // condition has taken place. initial break_en = 1'b0; always @(posedge i_clk) if ((i_reset)||(i_halt)) break_en <= 1'b0; else if ((wr_reg_ce)&&(wr_write_scc)) break_en <= wr_spreg_vl[`CPU_BREAK_BIT]; generate if (OPT_PIPELINED) begin : GEN_PENDING_BREAK reg r_break_pending; initial r_break_pending = 1'b0; always @(posedge i_clk) if ((clear_pipeline)||(!op_valid)) r_break_pending <= 1'b0; else if ((op_break)&&(!r_break_pending)) r_break_pending <= (!alu_busy)&&(!div_busy) &&(!fpu_busy)&&(!mem_busy) &&(!wr_reg_ce); // else // r_break_pending <= 1'b0; assign break_pending = r_break_pending; end else begin assign break_pending = op_break; end endgenerate assign o_break = ((break_en)||(!op_gie))&&(break_pending) &&(!clear_pipeline) ||(ill_err_i) ||((!alu_gie)&&(bus_err)) ||((!alu_gie)&&(div_error)) ||((!alu_gie)&&(fpu_error)) ||((!alu_gie)&&(alu_illegal)&&(!clear_pipeline)); // The sleep register. Setting the sleep register causes the CPU to // sleep until the next interrupt. Setting the sleep register within // interrupt mode causes the processor to halt until a reset. This is // a panic/fault halt. The trick is that you cannot be allowed to // set the sleep bit and switch to supervisor mode in the same // instruction: users are not allowed to halt the CPU. initial sleep = 1'b0; generate if (OPT_NO_USERMODE) begin : GEN_NO_USERMODE_SLEEP reg r_sleep_is_halt; initial r_sleep_is_halt = 1'b0; always @(posedge i_clk) if (i_reset) r_sleep_is_halt <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc) &&(wr_spreg_vl[`CPU_SLEEP_BIT]) &&(!wr_spreg_vl[`CPU_GIE_BIT])) r_sleep_is_halt <= 1'b1; // Trying to switch to user mode, either via a WAIT or an RTU // instruction will cause the CPU to sleep until an interrupt, in // the NO-USERMODE build. always @(posedge i_clk) if ((i_reset)||((i_interrupt)&&(!r_sleep_is_halt))) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc) &&(wr_spreg_vl[`CPU_GIE_BIT])) sleep <= 1'b1; end else begin : GEN_SLEEP always @(posedge i_clk) if ((i_reset)||(w_switch_to_interrupt)) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc)&&(!alu_gie)) // In supervisor mode, we have no protections. // The supervisor can set the sleep bit however // he wants. Well ... not quite. Switching to // user mode and sleep mode shouold only be // possible if the interrupt flag isn't set. // Thus: if (i_interrupt) // &&(wr_spreg_vl[GIE]) // don't set the sleep bit // otherwise however it would o.w. be set sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT]) &&((!i_interrupt) ||(!wr_spreg_vl[`CPU_GIE_BIT])); else if ((wr_reg_ce)&&(wr_write_cc) &&(wr_spreg_vl[`CPU_GIE_BIT])) // In user mode, however, you can only set the // sleep mode while remaining in user mode. // You can't switch to sleep mode *and* // supervisor mode at the same time, lest you // halt the CPU. sleep <= wr_spreg_vl[`CPU_SLEEP_BIT]; end endgenerate always @(posedge i_clk) if (i_reset) step <= 1'b0; else if ((wr_reg_ce)&&(!alu_gie)&&(wr_write_ucc)) step <= wr_spreg_vl[`CPU_STEP_BIT]; // The GIE register. Only interrupts can disable the interrupt register generate if (OPT_NO_USERMODE) begin assign w_switch_to_interrupt = 1'b0; assign w_release_from_interrupt = 1'b0; end else begin : GEN_PENDING_INTERRUPT reg r_pending_interrupt; always @(posedge i_clk) if (i_reset) r_pending_interrupt <= 1'b0; else if ((clear_pipeline)||(w_switch_to_interrupt)||(!gie)) r_pending_interrupt <= 1'b0; else if (i_interrupt) r_pending_interrupt <= 1'b1; else if (adf_ce_unconditional) begin if ((op_illegal)||(step)||(break_pending)) r_pending_interrupt <= 1'b1; end else if (break_pending) r_pending_interrupt <= 1'b1; else if ((mem_ce)&&(step)) r_pending_interrupt <= 1'b1; assign pending_interrupt = r_pending_interrupt; assign w_switch_to_interrupt = (gie)&&( // On interrupt (obviously) ((pending_interrupt) &&(!alu_phase)&&(!bus_lock)&&(!mem_busy)) // // On division by zero. If the divide isn't // implemented, div_valid and div_error will be short // circuited and that logic will be bypassed ||(div_error) // // Same thing on a floating point error. Note that // fpu_error must *never* be set unless fpu_valid is // also set as well, else this will fail. ||(fpu_error) // // ||(bus_err) // // If we write to the CC register ||((wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ); assign w_release_from_interrupt = (!gie)&&(!i_interrupt) // Then if we write the sCC register &&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_write_scc)) ); end endgenerate generate if (OPT_NO_USERMODE) begin assign gie = 1'b0; end else begin : SET_GIE reg r_gie; initial r_gie = 1'b0; always @(posedge i_clk) if (i_reset) r_gie <= 1'b0; else if (w_switch_to_interrupt) r_gie <= 1'b0; else if (w_release_from_interrupt) r_gie <= 1'b1; assign gie = r_gie; end endgenerate generate if (OPT_NO_USERMODE) begin assign trap = 1'b0; assign ubreak = 1'b0; end else begin : SET_TRAP_N_UBREAK reg r_trap; initial r_trap = 1'b0; always @(posedge i_clk) if ((i_reset)||(w_release_from_interrupt)) r_trap <= 1'b0; else if ((alu_gie)&&(wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_write_ucc)) // &&(wr_reg_id[4]) implied r_trap <= 1'b1; else if ((wr_reg_ce)&&(wr_write_ucc)&&(!alu_gie)) r_trap <= (r_trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]); reg r_ubreak; initial r_ubreak = 1'b0; always @(posedge i_clk) if ((i_reset)||(w_release_from_interrupt)) r_ubreak <= 1'b0; else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt)) r_ubreak <= 1'b1; else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) r_ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]); assign trap = r_trap; assign ubreak = r_ubreak; end endgenerate initial ill_err_i = 1'b0; always @(posedge i_clk) if (i_reset) ill_err_i <= 1'b0; // Only the debug interface can clear this bit else if ((dbgv)&&(wr_write_scc)) ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]); else if ((alu_illegal)&&(!alu_gie)&&(!clear_pipeline)) ill_err_i <= 1'b1; generate if (OPT_NO_USERMODE) begin assign ill_err_u = 1'b0; end else begin : SET_USER_ILLEGAL_INSN reg r_ill_err_u; initial r_ill_err_u = 1'b0; always @(posedge i_clk) // The bit is automatically cleared on release from interrupt // or reset if ((i_reset)||(w_release_from_interrupt)) r_ill_err_u <= 1'b0; // If the supervisor (or debugger) writes to this // register, clearing the bit, then clear it else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) r_ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT])); else if ((alu_illegal)&&(alu_gie)&&(!clear_pipeline)) r_ill_err_u <= 1'b1; assign ill_err_u = r_ill_err_u; end endgenerate // Supervisor/interrupt bus error flag -- this will crash the CPU if // ever set. initial ibus_err_flag = 1'b0; always @(posedge i_clk) if (i_reset) ibus_err_flag <= 1'b0; else if ((dbgv)&&(wr_write_scc)) ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]); else if ((bus_err)&&(!alu_gie)) ibus_err_flag <= 1'b1; // User bus error flag -- if ever set, it will cause an interrupt to // supervisor mode. generate if (OPT_NO_USERMODE) begin assign ubus_err_flag = 1'b0; end else begin : SET_USER_BUSERR reg r_ubus_err_flag; initial r_ubus_err_flag = 1'b0; always @(posedge i_clk) if ((i_reset)||(w_release_from_interrupt)) r_ubus_err_flag <= 1'b0; else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) r_ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]); else if ((bus_err)&&(alu_gie)) r_ubus_err_flag <= 1'b1; assign ubus_err_flag = r_ubus_err_flag; end endgenerate generate if (IMPLEMENT_DIVIDE != 0) begin : DIVERR reg r_idiv_err_flag, r_udiv_err_flag; // Supervisor/interrupt divide (by zero) error flag -- this will // crash the CPU if ever set. This bit is thus available for us // to be able to tell if/why the CPU crashed. initial r_idiv_err_flag = 1'b0; always @(posedge i_clk) if (i_reset) r_idiv_err_flag <= 1'b0; else if ((dbgv)&&(wr_write_scc)) r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]); else if ((div_error)&&(!alu_gie)) r_idiv_err_flag <= 1'b1; assign idiv_err_flag = r_idiv_err_flag; if (OPT_NO_USERMODE) begin assign udiv_err_flag = 1'b0; end else begin // User divide (by zero) error flag -- if ever set, it will // cause a sudden switch interrupt to supervisor mode. initial r_udiv_err_flag = 1'b0; always @(posedge i_clk) if ((i_reset)||(w_release_from_interrupt)) r_udiv_err_flag <= 1'b0; else if (((!alu_gie)||(dbgv))&&(wr_reg_ce) &&(wr_write_ucc)) r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]); else if ((div_error)&&(alu_gie)) r_udiv_err_flag <= 1'b1; assign udiv_err_flag = r_udiv_err_flag; end end else begin assign idiv_err_flag = 1'b0; assign udiv_err_flag = 1'b0; end endgenerate generate if (IMPLEMENT_FPU !=0) begin : FPUERR // Supervisor/interrupt floating point error flag -- this will // crash the CPU if ever set. reg r_ifpu_err_flag, r_ufpu_err_flag; initial r_ifpu_err_flag = 1'b0; always @(posedge i_clk) if (i_reset) r_ifpu_err_flag <= 1'b0; else if ((dbgv)&&(wr_write_scc)) r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]); else if ((fpu_error)&&(fpu_valid)&&(!alu_gie)) r_ifpu_err_flag <= 1'b1; // User floating point error flag -- if ever set, it will cause // a sudden switch interrupt to supervisor mode. initial r_ufpu_err_flag = 1'b0; always @(posedge i_clk) if ((i_reset)&&(w_release_from_interrupt)) r_ufpu_err_flag <= 1'b0; else if (((!alu_gie)||(dbgv))&&(wr_reg_ce) &&(wr_write_ucc)) r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]); else if ((fpu_error)&&(alu_gie)&&(fpu_valid)) r_ufpu_err_flag <= 1'b1; assign ifpu_err_flag = r_ifpu_err_flag; assign ufpu_err_flag = r_ufpu_err_flag; end else begin assign ifpu_err_flag = 1'b0; assign ufpu_err_flag = 1'b0; end endgenerate generate if (OPT_CIS) begin : GEN_IHALT_PHASE reg r_ihalt_phase; initial r_ihalt_phase = 0; always @(posedge i_clk) if (i_reset) r_ihalt_phase <= 1'b0; else if ((!alu_gie)&&(alu_pc_valid)&&(!clear_pipeline)) r_ihalt_phase <= alu_phase; assign ihalt_phase = r_ihalt_phase; end else begin : GEN_IHALT_PHASE assign ihalt_phase = 1'b0; end endgenerate generate if ((!OPT_CIS) || (OPT_NO_USERMODE)) begin : GEN_UHALT_PHASE assign uhalt_phase = 1'b0; end else begin : GEN_UHALT_PHASE reg r_uhalt_phase; initial r_uhalt_phase = 1'b0; always @(posedge i_clk) if ((i_reset)||(w_release_from_interrupt)) r_uhalt_phase <= 1'b0; else if ((alu_gie)&&(alu_pc_valid)) r_uhalt_phase <= alu_phase; else if ((!alu_gie)&&(wr_reg_ce)&&(wr_write_pc) &&(wr_reg_id[4])) r_uhalt_phase <= wr_spreg_vl[1]; assign uhalt_phase = r_uhalt_phase; end endgenerate // // Write backs to the PC register, and general increments of it // We support two: upc and ipc. If the instruction is normal, // we increment upc, if interrupt level we increment ipc. If // the instruction writes the PC, we write whichever PC is appropriate. // // Do we need to all our partial results from the pipeline? // What happens when the pipeline has gie and !gie instructions within // it? Do we clear both? What if a gie instruction tries to clear // a non-gie instruction? generate if (OPT_NO_USERMODE) begin assign upc = {(AW+2){1'b0}}; end else begin : SET_USER_PC reg [(AW+1):0] r_upc; always @(posedge i_clk) if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc)) r_upc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; else if ((alu_gie)&& (((alu_pc_valid)&&(!clear_pipeline)&&(!alu_illegal)) ||(mem_pc_valid))) r_upc <= alu_pc; assign upc = r_upc; end endgenerate initial ipc = { RESET_BUS_ADDRESS, 2'b00 }; always @(posedge i_clk) if (i_reset) ipc <= { RESET_BUS_ADDRESS, 2'b00 }; else if ((wr_reg_ce)&&(!wr_reg_id[4])&&(wr_write_pc)) ipc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; else if ((!alu_gie)&&(!alu_phase)&& (((alu_pc_valid)&&(!clear_pipeline)&&(!alu_illegal)) ||(mem_pc_valid))) ipc <= alu_pc; initial pf_pc = { RESET_BUS_ADDRESS, 2'b00 }; always @(posedge i_clk) if (i_reset) pf_pc <= { RESET_BUS_ADDRESS, 2'b00 }; else if ((dbg_clear_pipe)&&(wr_reg_ce)&&(wr_write_pc)) pf_pc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; else if ((w_switch_to_interrupt) ||((!gie)&&((w_clear_icache)||(dbg_clear_pipe)))) pf_pc <= { ipc[(AW+1):2], 2'b00 }; else if ((w_release_from_interrupt)||((gie)&&((w_clear_icache)||(dbg_clear_pipe)))) pf_pc <= { upc[(AW+1):2], 2'b00 }; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) pf_pc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; else if ((dcd_early_branch_stb)&&(!clear_pipeline)) pf_pc <= { dcd_branch_pc[AW+1:2] + 1'b1, 2'b00 }; else if ((new_pc)||((!pf_stalled)&&(pf_valid))) pf_pc <= { pf_pc[(AW+1):2] + 1'b1, 2'b00 }; initial last_write_to_cc = 1'b0; always @(posedge i_clk) if (i_reset) last_write_to_cc <= 1'b0; else last_write_to_cc <= (wr_reg_ce)&&(wr_write_cc); assign cc_write_hold = (wr_reg_ce)&&(wr_write_cc)||(last_write_to_cc); // If we aren't pipelined, or equivalently if we have no cache, these // instructions will get quietly (or not so quietly) ignored by the // optimizer. initial r_clear_icache = 1'b1; always @(posedge i_clk) if (i_reset) r_clear_icache <= 1'b0; else if ((r_halted)&&(i_clear_pf_cache)) r_clear_icache <= 1'b1; else if ((wr_reg_ce)&&(wr_write_scc)) r_clear_icache <= wr_spreg_vl[`CPU_CLRCACHE_BIT]; else r_clear_icache <= 1'b0; assign w_clear_icache = r_clear_icache; initial new_pc = 1'b1; always @(posedge i_clk) if ((i_reset)||(w_clear_icache)||(dbg_clear_pipe)) new_pc <= 1'b1; else if (w_switch_to_interrupt) new_pc <= 1'b1; else if (w_release_from_interrupt) new_pc <= 1'b1; // else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) // Can't check for *this* PC here, since a user PC might be // loaded in the pipeline and hence rewritten. Thus, while // I hate to do it, we'll need to clear the pipeline on any // PC write else if ((wr_reg_ce)&&(alu_gie == wr_reg_id[4])&&(wr_write_pc)) new_pc <= 1'b1; else new_pc <= 1'b0; // // The debug write-back interface //{{{ wire [31:0] w_debug_pc; generate if (OPT_NO_USERMODE) begin assign w_debug_pc[(AW+1):0] = { ipc, 2'b00 }; end else begin assign w_debug_pc[(AW+1):0] = { (i_dbg_reg[4]) ? { upc[(AW+1):2], uhalt_phase, 1'b0 } : { ipc[(AW+1):2], ihalt_phase, 1'b0 } }; end endgenerate generate if (AW<30) assign w_debug_pc[31:(AW+2)] = 0; endgenerate generate if (OPT_NO_USERMODE) begin : NO_USER_SETDBG always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg[3:0]]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= w_debug_pc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= w_iflags; o_dbg_reg[15] <= 1'b0; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end end else begin : SETDBG `ifdef NO_DISTRIBUTED_RAM reg [31:0] pre_dbg_reg; always @(posedge i_clk) pre_dbg_reg <= regset[i_dbg_reg]; always @(posedge i_clk) begin o_dbg_reg <= pre_dbg_reg; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= w_debug_pc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= (i_dbg_reg[4]) ? w_uflags : w_iflags; o_dbg_reg[15] <= 1'b0; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end `else always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= w_debug_pc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= (i_dbg_reg[4]) ? w_uflags : w_iflags; o_dbg_reg[15] <= 1'b0; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end `endif end endgenerate always @(posedge i_clk) o_dbg_cc <= { o_break, bus_err, gie, sleep }; generate if (OPT_PIPELINED) begin always @(posedge i_clk) r_halted <= (i_halt)&&(!alu_phase)&&(!bus_lock)&&( // To be halted, any long lasting instruction // must be completed. (!pf_cyc)&&(!mem_busy)&&(!alu_busy) &&(!div_busy)&&(!fpu_busy) // Operations must either be valid, or illegal &&((op_valid)||(i_reset)||(dcd_illegal)) // Decode stage must be either valid, in reset, // or producing an illelgal instruction &&((dcd_valid)||(i_reset)||(pf_illegal))); end else begin always @(posedge i_clk) r_halted <= (i_halt)&&(!alu_phase) // To be halted, any long lasting instruction // must be completed. &&(!pf_cyc)&&(!mem_busy)&&(!alu_busy) &&(!div_busy)&&(!fpu_busy); end endgenerate `ifdef NO_DISTRIBUTED_RAM reg r_dbg_stall; initial r_dbg_stall = 1'b1; always @(posedge i_clk) if (i_reset) r_dbg_stall <= 1'b1; else if (!r_halted) r_dbg_stall <= 1'b1; else r_dbg_stall <= (!i_dbg_we)||(!r_dbg_stall); assign o_dbg_stall = !r_halted; `else assign o_dbg_stall = !r_halted; `endif //}}} //}}} // // // Produce accounting outputs: Account for any CPU stalls, so we can // later evaluate how well we are doing. // // assign o_op_stall = (master_ce)&&(op_stall); assign o_pf_stall = (master_ce)&&(!pf_valid); assign o_i_count = (alu_pc_valid)&&(!clear_pipeline); `ifdef DEBUG_SCOPE //{{{ reg debug_trigger; initial debug_trigger = 1'b0; always @(posedge i_clk) debug_trigger <= (!i_halt)&&(o_break); wire [31:0] debug_flags; assign debug_flags = { debug_trigger, 3'b101, master_ce, i_halt, o_break, sleep, gie, ibus_err_flag, trap, ill_err_i, w_clear_icache, pf_valid, pf_illegal, dcd_ce, dcd_valid, dcd_stalled, op_ce, op_valid, op_pipe, alu_ce, alu_busy, alu_wR, alu_illegal, alu_wF, mem_ce, mem_we, mem_busy, mem_pipe_stalled, (new_pc), (dcd_early_branch) }; /* wire [25:0] bus_debug; assign bus_debug = { debug_trigger, mem_ce, mem_we, mem_busy, mem_pipe_stalled, o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we, i_wb_ack, i_wb_stall, i_wb_err, pf_cyc, pf_stb, pf_ack, pf_stall, pf_err, mem_cyc_gbl, mem_stb_gbl, mem_cyc_lcl, mem_stb_lcl, mem_we, mem_ack, mem_stall, mem_err }; */ // Verilator lint_off UNUSED wire [27:0] dbg_pc, dbg_wb_addr; // Verilator lint_on UNUSED generate if (AW-1 < 27) begin assign dbg_pc[(AW-1):0] = pf_pc[(AW+1):2]; assign dbg_pc[27:AW] = 0; assign dbg_wb_addr[(AW-1):0] = o_wb_addr; assign dbg_wb_addr[27:AW] = 0; end else // if (AW-1 >= 27) begin assign dbg_pc[27:0] = pf_pc[29:2]; assign dbg_wb_addr = o_wb_addr; end endgenerate always @(posedge i_clk) begin if ((i_halt)||(!master_ce)||(debug_trigger)||(o_break)) o_debug <= debug_flags; else if ((mem_valid)||((!clear_pipeline)&&(!alu_illegal) &&(((alu_wR)&&(alu_valid)) ||(div_valid)||(fpu_valid)))) o_debug <= { debug_trigger, 1'b0, wr_reg_id[3:0], wr_gpreg_vl[25:0]}; else if (clear_pipeline) o_debug <= { debug_trigger, 3'b100, dbg_pc }; else if ((o_wb_gbl_stb)|(o_wb_lcl_stb)) o_debug <= {debug_trigger, 2'b11, o_wb_gbl_stb, o_wb_we, (o_wb_we)?o_wb_data[26:0] : dbg_wb_addr[26:0] }; else o_debug <= debug_flags; // o_debug[25:0] <= bus_debug; end //}}} `endif // Make verilator happy //{{{ // verilator lint_off UNUSED wire [56:0] unused; assign unused = { pf_new_pc, fpu_ce, pf_data, wr_spreg_vl[1:0], ipc[1:0], upc[1:0], pf_pc[1:0], dcd_rA, dcd_pipe, dcd_zI, dcd_A_stall, dcd_B_stall, dcd_F_stall, op_Rcc, op_pipe, op_lock, mem_pipe_stalled, prelock_stall, dcd_F }; generate if (AW+2 < 32) begin wire [31:(AW+2)] generic_ignore; assign generic_ignore = wr_spreg_vl[31:(AW+2)]; end endgenerate // verilator lint_on UNUSED //}}} // Formal methods //{{{ `ifdef FORMAL // PHASE_ONE is defined by default if nothing else is defined // `ifdef ZIPCPU `define ASSUME assume `else `define ASSUME assert `endif `define ASSERT assert // // wire [1+4+15+6+4+13+AW+1+32+4+23-1:0] f_dcd_data; wire fc_op_prepipe; wire [6:0] fc_alu_Aid; wire fc_alu_wR, fc_alu_M, fc_alu_prepipe; reg f_alu_phase; //////////////////////////////////////////////////////////////// // // // Formal methods section // // //////////////////////////////////////////////////////////////// reg f_past_valid; initial f_past_valid = 1'b0; always @(posedge i_clk) f_past_valid <= 1'b1; initial assume(i_reset); initial assume(!i_wb_ack); initial assume(!i_wb_err); always @(posedge i_clk) if (!f_past_valid) begin assume(i_reset); assume(!i_wb_ack); assume(!i_wb_err); end ////////////////////////////////////////////// // // // The debugging interface // // ////////////////////////////////////////////// // // // Reading from the debugging interface always @(posedge i_clk) if ((f_past_valid)&&($past(i_halt))&&(!$past(i_dbg_we))) begin `ifdef NO_DISTRIBUTED_RAM if ($past(i_dbg_reg[3:1],2) != 3'h7) assert(o_dbg_reg == regset[i_dbg_reg[$past(i_dbg_reg,2)]]); `else if ($past(i_dbg_reg[3:1]) != 3'h7) assert(o_dbg_reg == regset[i_dbg_reg[$past(i_dbg_reg)]]); `endif if ($past(i_dbg_reg[4:0]) == 5'h0f) assert(o_dbg_reg[AW+1:0] == { ipc[(AW+1):2], ihalt_phase, 1'b0}); if ($past(i_dbg_reg[4:0]) == 5'h1f) assert(o_dbg_reg[AW+1:0] == { upc[(AW+1):2], uhalt_phase, 1'b0}); if ($past(i_dbg_reg[4:0]) == 5'h0e) begin assert(o_dbg_reg[14:6] == w_iflags[14:6]); assert(o_dbg_reg[ 4:0] == w_iflags[ 4:0]); end if ($past(i_dbg_reg[4:0]) == 5'h1e) begin assert(o_dbg_reg[14:6] == w_uflags[14:6]); assert(o_dbg_reg[ 4:0] == w_uflags[ 4:0]); end if ($past(i_dbg_reg[3:0]) == 4'he) begin assert(o_dbg_reg[15] == 1'b0); assert(o_dbg_reg[31:23] == w_cpu_info); assert(o_dbg_reg[`CPU_GIE_BIT] == gie); end end reg [2:0] f_dbg_pc_seq, f_dbg_cc_seq, f_dbg_reg_seq; initial f_dbg_pc_seq = 0; always @(posedge i_clk) if (i_reset) f_dbg_pc_seq <= 0; else begin f_dbg_pc_seq[0] <= r_halted && i_dbg_we && (i_dbg_reg == { gie, `CPU_PC_REG }); f_dbg_pc_seq[2:1] <= f_dbg_pc_seq[1:0]; end always @(posedge i_clk) begin if (f_dbg_pc_seq[0]) assert(dbgv && alu_reg == { gie, `CPU_PC_REG }); if (f_dbg_pc_seq[1]) begin assert(clear_pipeline); assert(pf_request_address == $past(i_dbg_data,2)); end end initial f_dbg_cc_seq = 0; always @(posedge i_clk) if (i_reset) f_dbg_cc_seq <= 0; else begin f_dbg_cc_seq[0] <= r_halted && i_dbg_we && (i_dbg_reg == { gie, `CPU_CC_REG }); f_dbg_cc_seq[2:1] <= f_dbg_cc_seq[1:0]; end always @(posedge i_clk) begin if (f_dbg_cc_seq[1]) begin assert(wr_reg_ce); assert(wr_reg_id == $past(i_dbg_reg,2)); assert(wr_spreg_vl == $past(i_dbg_data)); end end initial f_dbg_reg_seq = 0; always @(posedge i_clk) if (i_reset) f_dbg_reg_seq <= 0; else begin f_dbg_reg_seq[0] <= r_halted && i_dbg_we && (i_dbg_reg[3:1] != 3'h7 ); f_dbg_reg_seq[2:1] <= f_dbg_reg_seq[1:0]; end always @(posedge i_clk) begin if (f_dbg_reg_seq[0]) begin assert(dbgv && alu_reg == $past(i_dbg_reg)); assert($past(i_dbg_reg[3:1]) != 3'h7); assert(dbg_val == $past(i_dbg_data)); end if (f_dbg_reg_seq[1]) begin assert(wr_reg_ce); assert(wr_gpreg_vl == $past(i_dbg_data,2)); assert(wr_reg_id == $past(i_dbg_reg,2)); end end /* `ifdef NO_DISTRIBUTED_RAM always @(posedge i_clk) if ((f_past_valid)&&($past(f_past_valid))) assert(o_dbg_ack == $past(i_dbg_stb,2)); `else // NO_DISTRIBUTED_RAM always @(posedge i_clk) if ((f_past_valid)&&($past(f_past_valid))) assert(o_dbg_ack == $past(i_dbg_stb)); `endif */ ////////////////////////////////////////////// // // // Problem limiting assumptions // // ////////////////////////////////////////////// // // Take care that the assumptions below are actually representative // of how the CPU is used. One "careless" assumption could render // the proof meaningless. // // Because of the consequences of a careless assumption, we'll work // to place all of our assumptions at the beginning of the formal // properties for any phase. // // If the CPU is not halted, the debug interface will not try writing // to the CPU, nor will it try to issue a clear i-cache command always @(*) if (!r_halted) begin assume(!i_dbg_we); assume(!i_clear_pf_cache); end // A debug write will only take place during a CPUI halt always @(posedge i_clk) if (i_dbg_we) assume(i_halt); always @(posedge i_clk) if ((f_past_valid)&&($past(i_dbg_we))&&(!$past(o_dbg_stall))) assume(i_halt); always @(*) if ((!r_halted)||(!i_halt)) assume(!i_clear_pf_cache); always @(posedge i_clk) if ((f_past_valid)&&($past(i_clear_pf_cache))) assume(i_halt); always @(posedge i_clk) if ((f_past_valid)&&($past(i_dbg_we))&&($past(o_dbg_stall))) assume(($stable(i_dbg_we))&&($stable(i_dbg_data))); // Any attempt to set the PC will leave the bottom two bits clear always @(*) if ((wr_reg_ce)&&(wr_reg_id[3:0] == `CPU_PC_REG)) assume(wr_gpreg_vl[1:0] == 2'b00); // Once a halt is requested, the halt request will remain active until // the CPU comes to a complete halt. always @(posedge i_clk) if ((f_past_valid)&&($past(i_halt))&&(!$past(r_halted))) assume(i_halt); // Once asserted, an interrupt will stay asserted while the CPU is // in user mode always @(posedge i_clk) if ((f_past_valid)&&($past(i_interrupt))) begin if ($past(gie)) assume(i_interrupt); end always @(*) assume(!i_dbg_we); //////////////////////////////////////////////////////////////// // // // Reset checks // // //////////////////////////////////////////////////////////////// // // always @(posedge i_clk) if ((!f_past_valid)||($past(i_reset))) begin // Initial assertions `ASSERT(!pf_valid); `ASSERT(!dcd_phase); `ASSERT(!op_phase); `ASSERT(!alu_phase); // `ASSERT(!pf_valid); `ASSERT(!dcd_valid); `ASSERT(!op_valid); `ASSERT(!op_valid_mem); `ASSERT(!op_valid_div); `ASSERT(!op_valid_alu); `ASSERT(!op_valid_fpu); // `ASSERT(!alu_valid); `ASSERT(!alu_busy); // `ASSERT(!mem_valid); `ASSERT(!mem_busy); `ASSERT(!bus_err); // `ASSERT(!div_valid); `ASSERT(!div_busy); `ASSERT(!div_error); // `ASSERT(!fpu_valid); `ASSERT(!fpu_busy); `ASSERT(!fpu_error); // `ASSERT(!ill_err_i); `ASSERT(!ill_err_u); `ASSERT(!idiv_err_flag); `ASSERT(!udiv_err_flag); `ASSERT(!ibus_err_flag); `ASSERT(!ubus_err_flag); `ASSERT(!ifpu_err_flag); `ASSERT(!ufpu_err_flag); `ASSERT(!ihalt_phase); `ASSERT(!uhalt_phase); end always @(*) begin if (pf_valid) `ASSERT(f_past_valid); if (dcd_valid) `ASSERT(f_past_valid); if (alu_pc_valid) `ASSERT(f_past_valid); if (mem_valid) `ASSERT(f_past_valid); if (div_valid) `ASSERT(f_past_valid); if (fpu_valid) `ASSERT(f_past_valid); if (w_op_valid) `ASSERT(f_past_valid); if (mem_busy) `ASSERT(f_past_valid); if (mem_rdbusy) `ASSERT(f_past_valid); if (div_busy) `ASSERT(f_past_valid); if (fpu_busy) `ASSERT(f_past_valid); end //////////////////////////////////////////////////////////////// // // // Pipeline signaling check // // //////////////////////////////////////////////////////////////// // // always @(posedge i_clk) if (clear_pipeline) begin // `ASSERT(!alu_ce); `ASSERT(!mem_ce); end always @(posedge i_clk) if ((f_past_valid)&&($past(clear_pipeline))) begin `ASSERT(!alu_busy); `ASSERT(!div_busy); `ASSERT(!mem_busy); `ASSERT(!fpu_busy); // `ASSERT(!alu_valid); `ASSERT(!div_valid); `ASSERT(!fpu_valid); end always @(*) if (dcd_ce) `ASSERT((op_ce)||(!dcd_valid)); always @(*) if ((op_ce)&&(!clear_pipeline)) `ASSERT((adf_ce_unconditional)||(mem_ce)||(!op_valid)); // // Make sure the dcd stage is never permanently stalled always @(posedge i_clk) if ((f_past_valid)&&(!$past(alu_wR))&&(!$past(alu_wF)) &&($past(f_past_valid,2))&&(!$past(alu_wR,2))&&(!$past(alu_wF)) &&(!op_valid)&&(master_ce) &&(!clear_pipeline)&&(!i_reset) &&(!div_busy)&&(!div_valid) &&(!mem_busy)&&(!mem_valid)&&(!bus_err) &&(!alu_busy)&&(!alu_pc_valid)&&(!alu_valid) &&(!fpu_busy)&&(!fpu_valid)&&(!fpu_error) &&(!op_break)&&(!o_break) &&(!w_switch_to_interrupt) &&(!ibus_err_flag)&&(!ill_err_i)&&(!idiv_err_flag)) begin if (OPT_PIPELINED) assert(dcd_ce); if (!dcd_valid) assert(dcd_ce); end // // Make sure the ops stage is never permanently stalled always @(*) if ((op_valid)&&(master_ce)&&(!clear_pipeline)&&(!i_reset) &&(!div_busy)&&(!div_valid) &&(!mem_busy)&&(!mem_valid)&&(!bus_err) &&(!alu_busy)&&(!alu_pc_valid) &&(!fpu_busy)&&(!fpu_valid)&&(!fpu_error) &&(!op_break)&&(!o_break) &&(!w_switch_to_interrupt) &&(!alu_illegal) &&(!ibus_err_flag)&&(!ill_err_i)&&(!idiv_err_flag)) `ASSERT(adf_ce_unconditional | mem_ce); // // Make sure that, following an op_ce && op_valid, op_valid is only // true if dcd_valid was as well always @(posedge i_clk) if ((f_past_valid)&&($past(op_ce && op_valid && !dcd_valid))) begin if ($past(dcd_early_branch)) `ASSERT(!dcd_early_branch); else `ASSERT(!op_valid); end // // Same for the next step always @(posedge i_clk) if ((f_past_valid)&&($past(op_valid && (mem_ce ||adf_ce_unconditional))) &&(!$past(dcd_valid))) begin if ($past(dcd_early_branch)) `ASSERT(!dcd_early_branch); else `ASSERT(!op_valid); end //////////////////////////////////////////////// // // Assertions about the Program counter // //////////////////////////////////////////////// always @(*) `ASSERT(pf_instruction_pc[1:0]==2'b00); always @(*) if ((dcd_valid)&&(!dcd_illegal)) `ASSERT((!dcd_pc[1])||(dcd_phase)); always @(*) `ASSERT(!op_pc[0]); always @(*) `ASSERT(!alu_pc[0]); //////////////////////////////////////////////// // // Assertions about the prefetch (output) stage // //////////////////////////////////////////////// always @(posedge i_clk) if ((!clear_pipeline)&&(pf_valid)) `ASSERT(pf_gie == gie); always @(*) if ((pf_valid)&&(!clear_pipeline)) `ASSERT(pf_gie == gie); //////////////////////////////////////////////// // // Assertions about the decode stage // //////////////////////////////////////////////// // // always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&(!$past(clear_pipeline)) &&(!$past(w_clear_icache)) &&($past(dcd_valid))&&($past(dcd_stalled)) &&(!clear_pipeline)) begin `ASSERT((!OPT_PIPELINED)||(dcd_valid)); `ASSERT($stable(f_dcd_data)); `ASSERT($stable(f_dcd_insn_word)); end always @(*) if ((dcd_valid)&&(!clear_pipeline)) assert(f_dcd_insn_gie == dcd_gie); always @(posedge i_clk) if ((dcd_valid)&&(!dcd_illegal)&&(!clear_pipeline)) begin `ASSERT(dcd_gie == gie); if ((gie)||(dcd_phase)) begin `ASSERT((!dcd_wR)||(dcd_R[4]==dcd_gie)); `ASSERT((!dcd_rA)||(dcd_A[4]==dcd_gie)); `ASSERT((!dcd_rB)||(dcd_B[4]==dcd_gie)); end else if ((!dcd_early_branch)&&((dcd_M) ||(dcd_DIV)||(dcd_FP)||(!dcd_wR))) `ASSERT(!dcd_gie); if ((dcd_ALU)&&(dcd_opn==`CPU_MOV_OP)) `ASSERT(((!dcd_rA)&&(dcd_wR)) ||((!dcd_rA)&&(!dcd_rB)&&(!dcd_wR))); else if (dcd_ALU) `ASSERT( (gie == dcd_R[4]) &&(gie == dcd_A[4]) &&((!dcd_rB)||(gie == dcd_B[4])) &&(dcd_gie == gie)); end always @(*) if ((op_valid)&&(op_rA)&&(op_Aid[3:1] == 3'h7)&&(!clear_pipeline) &&(op_Aid[4:0] != { gie, 4'hf})) `ASSERT(!pending_sreg_write); always @(*) if ((op_valid)&&(op_rB)&&(op_Bid[3:1] == 3'h7)&&(!clear_pipeline) &&(op_Bid[4:0] != { gie, 4'hf})) `ASSERT(!pending_sreg_write); always @(*) if ((dcd_valid)&&(!clear_pipeline)) `ASSERT(dcd_gie == gie); // // // Piped Memory assertions // // always @(*) if ((dcd_valid)&&(dcd_M)&&(dcd_pipe)&&(!dcd_illegal)&&(!alu_illegal) &&(!break_pending)&&(!clear_pipeline)) begin if (op_valid_mem) begin `ASSERT(op_opn[0] == dcd_opn[0]); `ASSERT((!dcd_rB) ||(op_Bid[4:0] == dcd_B[4:0])); `ASSERT(op_rB == dcd_rB); end `ASSERT(dcd_B[4] == dcd_gie); end always @(*) if ((op_valid_mem)&&(op_pipe)&&(mem_busy)&&(!mem_rdbusy)) `ASSERT(op_opn[0] == 1'b1); always @(*) if ((dcd_valid)&&(!dcd_M)) `ASSERT((dcd_illegal)||(!dcd_pipe)); wire [31:0] f_dcd_mem_addr, f_pipe_addr_diff; assign f_dcd_mem_addr = w_op_BnI+dcd_I; assign f_pipe_addr_diff = f_dcd_mem_addr - op_Bv; always @(posedge i_clk) if ((f_past_valid)&&($past(dcd_early_branch))&&(!dcd_early_branch) &&(dcd_valid)) `ASSERT(!dcd_pipe); always @(*) if ((dcd_valid)&&(dcd_early_branch)) `ASSERT(!dcd_M); always @(*) if ((dcd_valid)&&(!dcd_illegal)&&(!fc_op_prepipe)) `ASSERT(!dcd_pipe); always @(*) if ((dcd_valid)&&(dcd_pipe)&&(w_op_valid)) begin // `ASSERT((dcd_A[3:1] != 3'h7)||(dcd_opn[0])); `ASSERT(dcd_B[3:1] != 3'h7); `ASSERT(dcd_rB); `ASSERT(dcd_M); `ASSERT(dcd_B == op_Bid); if (op_valid) `ASSERT((op_valid_mem)||(op_illegal)); if (((op_valid_mem)||(mem_busy))&&(dcd_rB) &&(!op_illegal)&&(!dcd_illegal) &&(!dbg_clear_pipe)&&(!clear_pipeline)) `ASSERT(f_pipe_addr_diff[AW+1:0] <= 4); if (op_valid_mem) begin `ASSERT((dcd_I[AW+1:3] == 0) ||(!alu_busy)||(!div_busy) ||(!alu_wR)||(alu_reg != dcd_B)); `ASSERT((!op_wR)||(op_Aid != op_Bid)); end end // // Decode option processing // // OPT_CIS ... the compressed instruction set always @(*) if ((!OPT_CIS)&&(dcd_valid)) begin `ASSERT(!dcd_phase); `ASSERT(dcd_pc[1:0] == 2'b0); end always @(*) if ((dcd_valid)&&(dcd_phase)) `ASSERT(f_dcd_insn_word[31]); // EARLY_BRANCHING always @(*) if (!EARLY_BRANCHING) `ASSERT((!dcd_early_branch) &&(!dcd_early_branch_stb) &&(!dcd_ljmp)); // IMPLEMENT_DIVIDE always @(*) if ((dcd_DIV)&&(dcd_valid)&&(!dcd_illegal)) `ASSERT(dcd_wR); //////////////////////////////////////////////// // // Assertions about the op stage // //////////////////////////////////////////////// // // wire fc_op_illegal, fc_op_wF, fc_op_ALU, fc_op_M, fc_op_DV, fc_op_FP, fc_op_break, fc_op_lock, fc_op_wR, fc_op_rA, fc_op_rB, fc_op_sim; wire [6:0] fc_op_Rid, fc_op_Aid, fc_op_Bid; wire [31:0] fc_op_I; wire [3:0] fc_op_cond; wire [3:0] fc_op_op; wire [22:0] fc_op_sim_immv; wire f_op_insn; //f_alu_insn,f_wb_insn reg f_op_phase, f_op_early_branch; reg f_op_zI; reg f_op_branch; f_idecode #(.ADDRESS_WIDTH(AW), .OPT_MPY((IMPLEMENT_MPY!=0)? 1'b1:1'b0), .OPT_EARLY_BRANCHING(EARLY_BRANCHING), .OPT_DIVIDE(IMPLEMENT_DIVIDE), .OPT_FPU(IMPLEMENT_FPU), .OPT_LOCK(OPT_LOCK), .OPT_OPIPE(OPT_PIPELINED_BUS_ACCESS), .OPT_SIM(1'b0), .OPT_CIS(OPT_CIS)) f_insn_decode_op(f_op_insn_word, f_op_phase, op_gie, fc_op_illegal, fc_op_Rid, fc_op_Aid, fc_op_Bid, fc_op_I, fc_op_cond, fc_op_wF, fc_op_op, fc_op_ALU, fc_op_M, fc_op_DV, fc_op_FP, fc_op_break, fc_op_lock, fc_op_wR, fc_op_rA, fc_op_rB, fc_op_prepipe, fc_op_sim, fc_op_sim_immv ); initial f_op_early_branch = 1'b0; always @(posedge i_clk) if (op_ce) begin f_op_insn_word <= f_dcd_insn_word; f_op_phase <= dcd_phase; f_op_early_branch <= dcd_early_branch; f_op_zI <= dcd_zI; end initial f_op_branch = 1'b0; always @(posedge i_clk) if ((i_reset)||(clear_pipeline)) f_op_branch <= 1'b0; else if (op_ce) f_op_branch <= (dcd_early_branch)||dcd_ljmp; else if ((adf_ce_unconditional)||(mem_ce)) f_op_branch <= 1'b0; always @(*) if (!EARLY_BRANCHING) assert(!f_op_branch); else if ((f_op_early_branch)&&(op_valid)) assert(f_op_branch); always @(posedge i_clk) if ((op_valid)&&((f_op_branch)||(!fc_op_illegal))&&(!clear_pipeline)) begin if (f_op_branch) begin `ASSERT(!op_valid_alu); `ASSERT(!op_valid_mem); `ASSERT(!op_valid_div); `ASSERT(!op_valid_fpu); `ASSERT(!op_illegal); `ASSERT(!op_rA); `ASSERT(!op_rB); `ASSERT(!op_wR); `ASSERT(!op_wF); `ASSERT(op_opn == `CPU_MOV_OP); end if (op_illegal) begin `ASSERT(!op_valid_mem); `ASSERT(!op_valid_div); `ASSERT(!op_valid_fpu); `ASSERT( op_valid_alu); `ASSERT((!OPT_PIPELINED)||(!op_rA)); `ASSERT((!OPT_PIPELINED)||(!op_rB)); `ASSERT(!f_op_branch); end else begin if (!f_op_branch) begin `ASSERT(fc_op_ALU == op_valid_alu); `ASSERT(fc_op_M == op_valid_mem); `ASSERT(fc_op_DV == op_valid_div); `ASSERT(fc_op_FP == op_valid_fpu); `ASSERT(fc_op_rA == op_rA); `ASSERT(fc_op_rB == op_rB); `ASSERT(fc_op_wF == op_wF); `ASSERT(fc_op_Rid[4:0] == op_R); `ASSERT(f_op_zI == (fc_op_I == 0)); `ASSERT(fc_op_wF == op_wF); `ASSERT(fc_op_lock == op_lock); `ASSERT(fc_op_break == op_break); `ASSERT((!wr_reg_ce)||(wr_reg_id != fc_op_Bid) ||(!op_rB)||(fc_op_I == 0)); `ifdef VERILATOR `ASSERT(fc_op_sim == op_sim); `ASSERT(fc_op_sim_immv == op_sim_immv); `endif if ((fc_op_wR)&&(fc_op_Rid[4:0] == { op_gie, 4'he })) `ASSERT(!pending_sreg_write); case(fc_op_cond[2:0]) 3'h0: `ASSERT(op_F == 8'h00); // Always 3'h1: `ASSERT(op_F == 8'h11); // Z 3'h2: `ASSERT(op_F == 8'h44); // LT 3'h3: `ASSERT(op_F == 8'h22); // C 3'h4: `ASSERT(op_F == 8'h88); // V 3'h5: `ASSERT(op_F == 8'h10); // NE 3'h6: `ASSERT(op_F == 8'h40); // GE (!N) 3'h7: `ASSERT(op_F == 8'h20); // NC endcase if ((fc_op_wR)&&(fc_op_Rid[4:0] == { gie, `CPU_PC_REG})) `ASSERT(!op_phase); else `ASSERT(f_op_phase == op_phase); end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value } `ASSERT((!op_wR)||(fc_op_Rid[4:0] == op_R)); `ASSERT(((!op_wR)&&(!op_rA))||(fc_op_Aid[4:0] == op_Aid[4:0])); `ASSERT((!op_rB)||(fc_op_Bid[4:0] == op_Bid)); // // if ((!alu_illegal)&&(!ill_err_i)&&(!clear_pipeline)) if (f_op_early_branch) begin // `ASSERT(fc_op_Rid[4:0] == { op_gie, `CPU_PC_REG }); // `ASSERT(fc_op_wR); // `ASSERT(!fc_op_wF); `ASSERT(op_opn == `CPU_MOV_OP); `ASSERT(!op_wR); `ASSERT(!op_wF); `ASSERT(f_op_branch); end else begin `ASSERT(fc_op_op == op_opn); `ASSERT(fc_op_wR == op_wR); end end if (!OPT_PIPELINED_BUS_ACCESS) `ASSERT((!mem_rdbusy)||(mem_wreg != fc_op_Bid) ||(!fc_op_rB)||(fc_op_I == 0)); end else if ((op_valid)&&(!clear_pipeline)&&(fc_op_illegal)) begin `ASSERT(op_illegal); `ASSERT(op_valid_alu); `ASSERT(!f_op_branch); end always @(*) if ((op_valid)&&(op_illegal)) begin `ASSERT(!op_valid_div); `ASSERT(!op_valid_fpu); `ASSERT(!op_valid_mem); end // always @(*) // if (!op_valid) // `ASSERT(!op_break); always @(*) if ((!OPT_CIS)&&(op_valid)) begin `ASSERT((!op_phase)||(op_illegal)); `ASSERT(op_pc[1:0] == 2'b0); end always @(*) if ((!OPT_LOCK)&&(op_valid)) `ASSERT((!op_lock)||(op_illegal)); always @(*) if (!EARLY_BRANCHING) assert(!f_op_early_branch); always @(*) if (op_ce) `ASSERT((dcd_valid)||(dcd_illegal)||(dcd_early_branch)); always @(*) if ((op_valid)&&(op_rB)&&(!f_op_zI)&&(wr_reg_ce)) `ASSERT((wr_reg_id != op_Bid)||(dbg_clear_pipe) ||(wr_reg_id[4:0] == { gie, `CPU_PC_REG})); always @(*) if ((f_past_valid)&&(!f_op_zI)&&(mem_rdbusy)&&(op_valid)&&(op_rB)) `ASSERT((!OPT_DCACHE)||(OPT_MEMPIPE) ||(mem_wreg != op_Bid)); always @(posedge i_clk) if ((op_valid)&&(op_rB)&&(!f_op_zI)&&((mem_rdbusy)||(mem_valid)) &&(mem_wreg != {gie, `CPU_PC_REG})) begin if (!OPT_MEMPIPE) begin `ASSERT(fc_alu_Aid[4:0] == mem_wreg); `ASSERT(mem_wreg != op_Bid); end else if (OPT_DCACHE) begin `ASSERT(fc_alu_Aid[4:0] != op_Bid); // It takes two clocks for the DCACHE to announce // the value it intends to write to via mem_wreg. // At that point, we can make this assertion. So, // if the memory is busy reading a value if ((!$past(mem_rdbusy)) // and we didn't request the read on the last // clock, &&($past(mem_ce))) begin // Then the memory should match our last read // request. There may be several reads // stuffed within the device, so the // fc_alu_Bid might not match the mem_wreg, // but the rest should be good // // What we really want to say, isn't valid yet // `ASSERT(mem_wreg != op_Bid); end else if (($past(mem_rdbusy))&&(!$past(mem_ce)) &&(!$past(mem_ce,2))) `ASSERT(mem_wreg != op_Bid); end else // if (!OPT_DCACHE) begin if ((mem_valid) ||($past(mem_rdbusy))) `ASSERT(mem_wreg != op_Bid); end end // always @(posedge i_clk) // if (($fell(mem_rdbusy))&&(mem_valid)) // begin // `ASSERT(mem_wreg == fc_alu_Aid[4:0]); // end always @(posedge i_clk) if (mem_rdbusy) begin `ASSERT(fc_alu_M); `ASSERT((!OPT_PIPELINED)||(fc_alu_wR)); end always @(*) if ((op_valid)&&(!clear_pipeline)) `ASSERT(op_gie == gie); always @(*) if ((op_valid_alu)&&(!op_illegal)) begin if ((op_opn != `CPU_SUB_OP) &&(op_opn != `CPU_AND_OP) &&(op_opn != `CPU_MOV_OP)) begin `ASSERT(op_wR); end if ((op_opn != `CPU_MOV_OP)&&(op_opn != `CPU_BREV_OP)) `ASSERT(op_rA); end always @(posedge i_clk) if ((op_valid)&&(!op_illegal) &&(!alu_illegal)&&(!ill_err_i)&&(!clear_pipeline)) begin `ASSERT(op_gie == gie); if ((gie)||(op_phase)) begin `ASSERT((!op_wR)||(op_R[4] == gie)); `ASSERT((!op_rA)||(op_Aid[4] == gie)); `ASSERT((!op_rB)||(op_Bid[4] == gie)); end else if (((op_valid_mem) ||(op_valid_div)||(op_valid_fpu) ||((op_valid_alu)&&(op_opn!=`CPU_MOV_OP)))) begin `ASSERT((!op_wR)||(op_R[4] == gie)); `ASSERT((!op_rA)||(op_Aid[4] == gie)); `ASSERT((!op_rB)||(op_Bid[4] == gie)); end end always @(posedge i_clk) if ((!op_valid)&&(!$past(op_illegal)) &&(!clear_pipeline)&&(!pending_interrupt)) `ASSERT(!op_illegal); always @(*) begin if (alu_ce) `ASSERT(adf_ce_unconditional); if (div_ce) `ASSERT(adf_ce_unconditional); if (fpu_ce) `ASSERT(adf_ce_unconditional); if ((op_valid)&&(op_illegal)) `ASSERT(op_valid_alu); end always @(*) if (mem_ce) `ASSERT((op_valid)&&(op_valid_mem)&&(!op_illegal)); always @(*) if (div_ce) `ASSERT(op_valid_div); always @(*) if ((ibus_err_flag)||(ill_err_i)||(idiv_err_flag)) begin `ASSERT(master_stall); `ASSERT(!mem_ce); `ASSERT(!alu_ce); `ASSERT(!div_ce); `ASSERT(!adf_ce_unconditional); end always @(posedge i_clk) if ((adf_ce_unconditional)||(mem_ce)) `ASSERT(op_valid); always @(*) if ((op_valid_alu)&&(!adf_ce_unconditional)&&(!clear_pipeline)) `ASSERT(!op_ce); always @(*) if ((op_valid_div)&&(!adf_ce_unconditional)) `ASSERT(!op_ce); always @(posedge i_clk) if (alu_stall) `ASSERT(!alu_ce); always @(posedge i_clk) if (mem_stalled) `ASSERT(!mem_ce); always @(posedge i_clk) if (div_busy) `ASSERT(!div_ce); always @(*) if ((!i_reset)&&(break_pending)&&(!clear_pipeline)) `ASSERT((op_valid)&&(op_break)); // // // Op: Memory pipeline assertions // // wire [AW-1:0] f_next_mem, f_op_mem_addr; assign f_next_mem = mem_addr + 1'b1; assign f_op_mem_addr = op_Bv[AW+1:2]; always @(*) if ((op_valid)&&(!fc_alu_prepipe)) begin `ASSERT((!op_valid_mem)||(!op_pipe)); end always @(*) if ((op_valid_mem)&&(op_pipe)) begin if (mem_rdbusy) `ASSERT(op_opn[0] == 1'b0); if ((mem_busy)&&(!mem_rdbusy)) `ASSERT(op_opn[0] == 1'b1); if (mem_rdbusy) begin if (OPT_PIPELINED_BUS_ACCESS) begin end else if (OPT_LGDCACHE != 0) `ASSERT(mem_wreg != op_Bid); end end /* always @(*) if ((dcd_valid)&&(dcd_pipe)) begin if ((op_valid_mem)&&(f_op_zI)) `ASSERT(dcd_I <= 4); if (f_op_zI) `ASSERT(dcd_I <= 4); // if ((!op_valid)&&(mem_rdbusy)) // `ASSERT(mem_wreg != dcd_B); end */ always @(posedge i_clk) if ((op_valid_mem)&&(op_pipe)) begin if ((mem_busy)&&(OPT_LGDCACHE == 0)) `ASSERT((f_op_mem_addr == mem_addr) ||(f_op_mem_addr == f_next_mem)); if (mem_valid) `ASSERT(op_Bid != mem_wreg); if (alu_busy||alu_valid) `ASSERT((!alu_wR)||(op_Bid != alu_reg)); if (f_past_valid) begin if ((mem_busy)&&(OPT_LGDCACHE==0)) `ASSERT((op_Bv[(AW+1):2]==mem_addr[(AW-1):0]) ||(op_Bv[(AW+1):2]==mem_addr[(AW-1):0]+1'b1)); if ($past(mem_ce)) `ASSERT(op_Bid == $past(op_Bid)); `ASSERT((op_Bid[3:1] != 3'h7)); end if ((mem_rdbusy)||(mem_valid)) begin if (!OPT_MEMPIPE) begin `ASSERT(fc_alu_Aid[4:0] == mem_wreg); `ASSERT(mem_wreg != op_Bid); end else if (OPT_DCACHE) begin `ASSERT(fc_alu_Aid[4:0] != op_Bid); // It takes two clocks for the DCACHE to announce // the value it intends to write to via mem_wreg. // At that point, we can make this assertion. So, // if the memory is busy reading a value if ((!$past(mem_rdbusy)) // and we didn't request the read on the last // clock, &&($past(mem_ce))) begin // Then the memory should match our last read // request. There may be several reads // stuffed within the device, so the // fc_alu_Bid might not match the mem_wreg, // but the rest should be good // // What we really want to say, isn't valid yet // `ASSERT(mem_wreg != op_Bid); end else if (($past(mem_rdbusy))&&(!$past(mem_ce)) &&(!$past(mem_ce,2))) `ASSERT(mem_wreg != op_Bid); end else // if (!OPT_DCACHE) begin if ((mem_valid) ||($past(mem_rdbusy))) `ASSERT(mem_wreg != op_Bid); end end end always @(*) if ((dcd_valid)&&(dcd_pipe)) `ASSERT((op_Aid[3:1] != 3'h7)||(op_opn[0])); always @(*) if ((op_valid)&(!op_valid_mem)) `ASSERT((op_illegal)||(!op_pipe)); //////////////////////////////////////////////// // // Assertions about the ALU stage // //////////////////////////////////////////////// // // always @(*) if ((alu_ce)&&(!clear_pipeline)) `ASSERT((op_valid_alu)&&(op_gie == gie)); always @(*) if ((mem_ce)&&(!clear_pipeline)) `ASSERT((op_valid_mem)&&(op_gie == gie)); always @(*) if ((div_ce)&&(!clear_pipeline)) `ASSERT((op_valid_div)&&(op_gie == gie)); always @(*) if ((!clear_pipeline)&&((mem_valid)||(div_valid)||(div_busy) ||(mem_rdbusy)||(alu_valid))) `ASSERT(alu_gie == gie); always @(*) if ((!OPT_CIS)&&(alu_pc_valid)) `ASSERT(alu_pc[1:0] == 2'b0); always @(*) if (!OPT_LOCK) `ASSERT((!bus_lock)&&(!prelock_stall)); always @(*) if (!IMPLEMENT_DIVIDE) `ASSERT((!dcd_DIV)&&(!op_valid_div)&&(!div_busy)&&(!div_valid)&&(!div_ce)); always @(*) if (IMPLEMENT_MPY == 0) `ASSERT(alu_busy == 1'b0); always @(*) if (!clear_pipeline) begin if ((alu_valid)||(alu_illegal)) `ASSERT(alu_gie == gie); if (div_valid) `ASSERT(alu_gie == gie); end always @(*) if (alu_busy) begin `ASSERT(!mem_rdbusy); `ASSERT(!div_busy); `ASSERT(!fpu_busy); end else if (mem_rdbusy) begin `ASSERT(!div_busy); `ASSERT(!fpu_busy); end else if (div_busy) `ASSERT(!fpu_busy); always @(posedge i_clk) if ((div_valid)||(div_busy)) `ASSERT(alu_reg[3:1] != 3'h7); always @(posedge i_clk) if ((f_past_valid)&&(wr_reg_ce) &&((!$past(r_halted))||(!$past(i_dbg_we)))) `ASSERT(alu_gie == gie); wire [31:0] f_Bv; reg [31:0] f_Av, f_pre_Bv; // // // The A operand // // always @(*) begin f_Av = regset[fc_op_Aid[4:0]]; if (fc_op_Aid[3:0] == `CPU_PC_REG) begin if ((wr_reg_ce)&&(wr_reg_id == fc_op_Aid[4:0])) f_Av = wr_spreg_vl; else if (fc_op_Aid[4] == op_gie) f_Av = op_pc; // f_next_addr; else if (fc_op_Aid[3:0] == { 1'b1, `CPU_PC_REG }) begin f_Av[31:(AW+1)] = 0; f_Av[(AW+1):0] = { upc, uhalt_phase, 1'b0 }; end end else if (fc_op_Aid[4:0] == { 1'b0, `CPU_CC_REG }) begin f_Av = { w_cpu_info, regset[fc_op_Aid[4:0]][22:16], 1'b0, w_iflags }; if ((wr_reg_ce)&&(wr_reg_id == fc_op_Aid[4:0])) f_Av[22:16] = wr_spreg_vl[22:16]; end else if (fc_op_Aid[4:0] == { 1'b1, `CPU_CC_REG }) begin f_Av = { w_cpu_info, regset[fc_op_Aid[4:0]][22:16], 1'b1, w_uflags }; if ((wr_reg_ce)&&(wr_reg_id == fc_op_Aid[4:0])) f_Av[22:16] = wr_spreg_vl[22:16]; end else if ((wr_reg_ce)&&(wr_reg_id == fc_op_Aid[4:0])) f_Av = wr_gpreg_vl; else f_Av = regset[fc_op_Aid[4:0]]; end // // // The B operand // // // The PRE-logic always @(*) begin f_pre_Bv = regset[fc_op_Bid[4:0]]; // if (fc_op_Bid[3:0] == `CPU_PC_REG) begin // Can always read your own address if (fc_op_Bid[4] == op_gie) f_pre_Bv = { {(30-AW){1'b0}}, op_pc[(AW+1):2], 2'b00 }; // f_next_addr; else // if (fc_op_Bid[4]) // Supervisor or user may read the users PC reg begin f_pre_Bv = 0; f_pre_Bv[(AW+1):0] = { upc[(AW+1):2], uhalt_phase, 1'b0 }; if ((wr_reg_ce)&&(wr_reg_id == fc_op_Bid[4:0])) f_pre_Bv = wr_spreg_vl; end end else if (fc_op_Bid[3:0] == `CPU_CC_REG) begin f_pre_Bv = { w_cpu_info, regset[fc_op_Bid[4:0]][22:16], 1'b0, w_uflags }; if ((fc_op_Bid[4] == op_gie)&&(!fc_op_Bid[4])) f_pre_Bv[14:0] = (op_gie) ? w_uflags : w_iflags; if ((wr_reg_ce)&&(wr_reg_id == fc_op_Bid[4:0])) f_pre_Bv[22:16] = wr_spreg_vl[22:16]; end else if ((wr_reg_ce)&&(wr_reg_id == fc_op_Bid[4:0])) f_pre_Bv = wr_gpreg_vl; else f_pre_Bv = regset[fc_op_Bid[4:0]]; end // The actual calculation of B assign f_Bv = (fc_op_rB) ? ((fc_op_Bid[5]) ? ( { f_pre_Bv }+{ fc_op_I[29:0],2'b00 }) : (f_pre_Bv + fc_op_I)) : fc_op_I; //////////////////////////////// // // CONTRACT: The operands to an ALU/MEM/DIV operation // must be valid. // always @(posedge i_clk) if ((op_valid)&&(!op_illegal)&&(!clear_pipeline)) begin if (((!wr_reg_ce)||(wr_reg_id!= { gie, `CPU_PC_REG })) &&(!dbg_clear_pipe)&&(!clear_pipeline)&&(!f_op_branch)) begin if ((fc_op_rA)&&(fc_op_Aid[3:1] != 3'h7)) `ASSERT(f_Av == op_Av); `ASSERT(f_Bv == op_Bv); end end //////////////////////////////////////////////////////////////// // // // Pipeline signaling check // // //////////////////////////////////////////////////////////////// // // // // Assertions about the prefetch // Assertions about the decode stage // dcd_ce, dcd_valid assign f_dcd_data = { dcd_phase, dcd_opn, dcd_A, dcd_B, dcd_R, // 4+15 dcd_Acc, dcd_Bcc, dcd_Apc, dcd_Bpc, dcd_Rcc, dcd_Rpc,//6 dcd_F, // 4 dcd_wR, dcd_rA, dcd_rB, dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_wF, dcd_gie, dcd_break, dcd_lock, dcd_pipe, dcd_ljmp, dcd_pc, // AW+1 dcd_I, // 32 dcd_zI, // true if dcd_I == 0 dcd_illegal, dcd_early_branch, dcd_sim, dcd_sim_immv }; //////////////////////////////////////////////// // // Assertions about the prefetch (output) stage // //////////////////////////////////////////////// //////////////////////////////////////////////// // // Assertions about the op stage // //////////////////////////////////////////////// // op_valid // op_ce // op_stall wire [4+AW+2+7+4-1:0] f_op_data; assign f_op_data = { op_valid_mem, op_valid_alu, op_valid_div, op_valid_fpu, // The Av and Bv values can change while we are stalled in the // op stage--that's why we are stalled there // r_op_Av, r_op_Bv, // 32 ea op_pc[AW+1:2], // AW op_wR, op_wF, r_op_F, // 7 op_illegal, op_break, op_lock, op_pipe }; always @(posedge i_clk) if ((f_past_valid)&&($past(op_valid))&&(!$past(i_reset)) &&(!$past(clear_pipeline))) begin if (($past(op_valid_mem))&&($past(mem_stalled))) `ASSERT($stable(f_op_data[AW+16:1])&&(!$rose(op_pipe))); if (($past(op_valid_div))&&($past(div_busy))) `ASSERT($stable(f_op_data)); end ///////// // // CIS instructions, enabled by OPT_CIS // ///////// //////////////////////////////////////////////// // // Assertions about the ALU stage // //////////////////////////////////////////////// // // // alu_valid // alu_ce // alu_stall // ALU stage assertions reg f_alu_branch; always @(posedge i_clk) if ((alu_ce)||(mem_ce)||(div_ce)||(fpu_ce)) begin f_alu_insn_word <= f_op_insn_word; f_alu_phase <= f_op_phase; end initial f_alu_branch = 1'b0; always @(posedge i_clk) if ((adf_ce_unconditional)||(mem_ce)) f_alu_branch <= f_op_branch; else f_alu_branch <= 1'b0; wire fc_alu_illegal, fc_alu_wF, fc_alu_ALU, fc_alu_DV, fc_alu_FP, fc_alu_break, fc_alu_lock, fc_alu_rA, fc_alu_rB, fc_alu_sim; wire [6:0] fc_alu_Rid, fc_alu_Bid; wire [31:0] fc_alu_I; wire [3:0] fc_alu_cond; wire [3:0] fc_alu_op; wire [22:0] fc_alu_sim_immv; f_idecode #(.ADDRESS_WIDTH(AW), .OPT_MPY((IMPLEMENT_MPY!=0)? 1'b1:1'b0), .OPT_EARLY_BRANCHING(EARLY_BRANCHING), .OPT_DIVIDE(IMPLEMENT_DIVIDE), .OPT_FPU(IMPLEMENT_FPU), .OPT_LOCK(OPT_LOCK), .OPT_OPIPE(OPT_PIPELINED_BUS_ACCESS), .OPT_SIM(1'b0), .OPT_CIS(OPT_CIS)) f_insn_decode_alu(f_alu_insn_word, f_alu_phase, alu_gie, fc_alu_illegal, fc_alu_Rid, fc_alu_Aid, fc_alu_Bid, fc_alu_I, fc_alu_cond, fc_alu_wF, fc_alu_op, fc_alu_ALU, fc_alu_M, fc_alu_DV, fc_alu_FP, fc_alu_break, fc_alu_lock, fc_alu_wR, fc_alu_rA, fc_alu_rB, fc_alu_prepipe, fc_alu_sim, fc_alu_sim_immv ); always @(posedge i_clk) if (!wr_reg_ce) begin if (f_alu_branch) begin `ASSERT((!div_valid)&&(!div_busy)); `ASSERT((!fpu_valid)&&(!fpu_busy)); `ASSERT(!mem_rdbusy); `ASSERT(!alu_busy); end else begin if (!fc_alu_DV) `ASSERT((!div_valid)&&(!div_busy)&&(!div_error)); if (!fc_alu_M) `ASSERT(!mem_rdbusy); if (!fc_alu_ALU) `ASSERT(!alu_busy); if (!fc_alu_FP) `ASSERT((!fpu_busy)&&(!fpu_error)); if (alu_busy) `ASSERT((fc_alu_op[3:1] == 3'h5) ||(fc_alu_op[3:0] == 4'hc)); if ((alu_busy)||(div_busy)||(fpu_busy)) begin `ASSERT(!mem_rdbusy); `ASSERT((clear_pipeline) ||(fc_alu_Rid[4:0] == alu_reg)); if (alu_busy) `ASSERT(fc_alu_wF == alu_wF); if ((fc_alu_Rid[3:1] == 3'h7)&&(alu_wR) &&(fc_alu_Rid[4:0] != { gie, 4'hf })) `ASSERT(pending_sreg_write); end else if (mem_rdbusy) begin if ($past(mem_rdbusy)) `ASSERT(fc_alu_Rid[4] == mem_wreg[4]); // end //if ((div_busy)||(fpu_busy)) // `ASSERT(alu_wR); //else if ((alu_busy)&&(alu_wR)) `ASSERT(fc_alu_wR); if (alu_busy || mem_rdbusy || div_busy) begin if ((fc_alu_wR)&&(fc_alu_Rid[4:0] == { gie, `CPU_PC_REG})) `ASSERT(!alu_phase); else `ASSERT(f_alu_phase == alu_phase); end end end else if (!dbgv) // && wr_reg_ce begin `ASSERT(fc_alu_DV || (!div_valid)&&(!div_error)); `ASSERT(fc_alu_ALU|| !alu_valid); `ASSERT(fc_alu_M || !mem_valid); `ASSERT(fc_alu_FP || (!fpu_valid)&&(!fpu_error)); `ASSERT((!alu_busy)&&(!div_busy)&&(!fpu_busy)); if ((!OPT_PIPELINED_BUS_ACCESS)||((!mem_valid)&&(!mem_rdbusy))) `ASSERT(fc_alu_Rid[4:0] == wr_reg_id); if ((!alu_illegal)&&(fc_alu_cond[3])&&(fc_alu_wR)&&(fc_alu_ALU)) `ASSERT(alu_wR); if (!mem_valid) `ASSERT(fc_alu_Rid[4:0] == alu_reg); `ASSERT((!alu_wR)||(fc_alu_wR == alu_wR)); if (alu_valid) `ASSERT(fc_alu_wF == alu_wF); if (!fc_alu_wF) `ASSERT(!wr_flags_ce); // `ASSERT(pending_sreg_write // == ((OPT_PIPELINED)&&(wr_reg_id[3:1]==3'h7))); `ASSERT(!f_alu_branch); end always @(posedge i_clk) if (f_mem_pc) begin if ((!OPT_DCACHE)||(!OPT_MEMPIPE)) `ASSERT(!fc_alu_prepipe); else if ((mem_rdbusy)&&(!$past(mem_ce))&&(!$past(mem_ce,2))) `ASSERT(!fc_alu_prepipe); end always @(posedge i_clk) if (mem_rdbusy) begin // In pipelined mode, this is an ongoing load operation // Otherwise, mem_rdbusy == mem_busy and we have no idea // what type of operation we are in `ASSERT(!fc_alu_illegal); `ASSERT(fc_alu_M); if (OPT_PIPELINED) begin `ASSERT(fc_alu_wR); end if (!OPT_PIPELINED_BUS_ACCESS) `ASSERT(fc_alu_Rid[4:0] == mem_wreg); if ((fc_alu_wR)&&(fc_alu_Rid[4:0] == { gie, `CPU_PC_REG})) `ASSERT(!alu_phase); else `ASSERT(f_alu_phase == alu_phase); end else if ((mem_busy)&&(fc_alu_M)) begin // Ongoing store operation `ASSERT(!fc_alu_illegal); `ASSERT(fc_alu_M); `ASSERT(!fc_alu_wR); end // always @(posedge i_clk) // if ((OPT_PIPELINED)&&(cc_invalid_for_dvd)) // begin // assert((op_valid &&(fc_op_wF // ||(fc_op_wR &&(fc_op_Aid[3:0]==`CPU_CC_REG)))) // ||fc_alu_wF // ||((fc_alu_wR &&(fc_alu_Aid[3:0] == `CPU_CC_REG)))); // end //////////////////////////////////////////////// // // Assertions about the writeback stage // //////////////////////////////////////////////// // // initial assert((!OPT_LOCK)||(OPT_PIPELINED)); always @(posedge i_clk) if ((f_past_valid)&&($past(i_reset))&&($past(gie) != gie)) `ASSERT(clear_pipeline); always @(*) if (!IMPLEMENT_FPU) begin `ASSERT(!ifpu_err_flag); `ASSERT(!ufpu_err_flag); end always @(posedge i_clk) if ((f_past_valid)&&(r_halted)) begin `ASSERT(!div_busy); `ASSERT(!mem_busy); `ASSERT(!alu_busy); `ASSERT(!div_valid); `ASSERT(!mem_valid); `ASSERT(!alu_valid); end always @(*) if (((wr_reg_ce)||(wr_flags_ce))&&(!dbgv)) `ASSERT(!alu_illegal); always @(*) if (wr_reg_ce) begin `ASSERT(fc_alu_wR); // Since writes are asynchronous, they can create errors later `ASSERT((!bus_err)||(!mem_valid)); `ASSERT(!fpu_error); `ASSERT(!div_error); end ////////////////////////////////////////////// // // // Tying together the WB requests and acks // // ////////////////////////////////////////////// // // always @(*) begin if (mem_cyc_gbl) begin `ASSERT(f_gbl_mem_nreqs == f_mem_nreqs); `ASSERT(f_gbl_mem_nacks == f_mem_nacks); end if (mem_cyc_lcl) begin `ASSERT(f_lcl_mem_nreqs == f_mem_nreqs); `ASSERT(f_lcl_mem_nacks == f_mem_nacks); end `ASSERT(f_gbl_pf_nreqs == f_pf_nreqs); `ASSERT(f_gbl_pf_nacks == f_pf_nreqs); `ASSERT(f_gbl_pf_outstanding == f_pf_outstanding); `ASSERT(f_lcl_pf_nreqs == 0); `ASSERT(f_lcl_pf_nacks == 0); end ////////////////////////////////////////////// // // // Ad-hoc (unsorted) properties // // ////////////////////////////////////////////// // // // always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&($past(mem_rdbusy)) &&(!$past(mem_valid)||($past(mem_wreg[3:1] != 3'h7)))) `ASSERT(mem_wreg[4] == alu_gie); always @(posedge i_clk) if (mem_valid) `ASSERT(mem_wreg[4] == alu_gie); // Break instructions are not allowed to move past the op stage always @(*) if ((break_pending)||(op_break)) `ASSERT((!alu_ce)&&(!mem_ce)&&(!div_ce)&&(!fpu_ce)); always @(*) if (op_break) `ASSERT((!alu_ce)&&(!mem_ce)&&(!div_ce)&&(!fpu_ce)); always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset)) &&($past(break_pending))&&(!break_pending)) `ASSERT((clear_pipeline)||($past(clear_pipeline))); always @(*) if ((o_break)||((alu_valid)&&(alu_illegal))) begin `ASSERT(!alu_ce); `ASSERT(!mem_ce); `ASSERT(!div_ce); `ASSERT(!fpu_ce); `ASSERT(!mem_rdbusy); // The following two shouldn't be true, but will be true // following a bus error if (!bus_err) begin `ASSERT(!alu_busy); `ASSERT(!div_busy); `ASSERT(!fpu_busy); end end always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&(!$past(clear_pipeline))&& ($past(div_busy))&&(!clear_pipeline)) begin `ASSERT($stable(alu_reg)); `ASSERT(alu_reg[4] == alu_gie); `ASSERT($stable(alu_pc)); `ASSERT($stable(alu_phase)); end always @(posedge i_clk) if ((f_past_valid)&&(!$past(i_reset))&&(!i_reset) &&(!$past(clear_pipeline))&&(!clear_pipeline) &&(($past(div_busy))||($past(mem_rdbusy)))) `ASSERT($stable(alu_gie)); always @(posedge i_clk) if (mem_rdbusy) `ASSERT(!new_pc); always @(posedge i_clk) if ((wr_reg_ce)&&((wr_write_cc)||(wr_write_pc))) `ASSERT(wr_spreg_vl == wr_gpreg_vl); // always @(posedge i_clk) // if ((f_past_valid)&&(alu_gie)&&(wr_reg_ce) // &&((!$past(r_halted))||(!$past(i_dbg_we)))) // `ASSERT(wr_reg_id[4]); // else if ((alu_gie)&&((alu_busy)||(div_busy))) // `ASSERT((!alu_wR)||(alu_reg[4])); always @(posedge i_clk) if ((f_past_valid)&&(!$past(clear_pipeline))&&(!$past(i_reset)) &&($past(op_valid))&&($past(op_illegal))&&(!op_illegal)) `ASSERT(alu_illegal); always @(*) if ((OPT_PIPELINED)&&(alu_valid)&&(alu_wR)&&(!clear_pipeline) &&(alu_reg[3:1] == 3'h7) &&(alu_reg[4:0] != { gie, `CPU_PC_REG })) `ASSERT(pending_sreg_write); always @(posedge i_clk) if ((OPT_PIPELINED)&&(mem_valid)&&(mem_wreg[3:1] == 3'h7) &&(mem_wreg[4:0] != { gie, `CPU_PC_REG })) `ASSERT(pending_sreg_write); // ! else if ((OPT_PIPELINED)&&(OPT_DCACHE)&&(mem_rdbusy) &&($past(mem_rdbusy)) &&($past(mem_rdbusy,2))) `ASSERT((mem_wreg[3:1] != 3'h7) ||(mem_wreg == { gie, `CPU_PC_REG}) ||(pending_sreg_write)); // &&(mem_wreg[4:0] != { gie, `CPU_PC_REG })&&(mem_rdbusy)) // `ASSERT(pending_sreg_write); always @(*) if ((op_valid_alu)||(op_valid_div)||(op_valid_mem)||(op_valid_fpu)) `ASSERT(op_valid); always @(*) if (!OPT_PIPELINED) begin if (op_valid) begin `ASSERT(!dcd_valid); `ASSERT(!mem_busy); `ASSERT(!alu_busy); `ASSERT(!div_busy); `ASSERT((!wr_reg_ce)||(dbgv)); `ASSERT(!wr_flags_ce); end end always @(posedge i_clk) if ((!OPT_PIPELINED)&&(f_past_valid)) begin if (op_valid) `ASSERT($stable(f_dcd_insn_word)); end always @(posedge i_clk) if ((alu_ce)||(div_ce)||(fpu_ce)) `ASSERT(adf_ce_unconditional); always @(posedge i_clk) if ((!clear_pipeline)&&(master_ce)&&(op_ce)&&(op_valid)) begin if (op_valid_mem) `ASSERT((mem_ce)||(!set_cond)); else begin `ASSERT(!master_stall); if ((set_cond)&&(op_valid_div)) `ASSERT(div_ce||pending_sreg_write); if (!op_valid_alu) assert(!alu_ce); end end ////////////////////////////////////////////// // // // Cover statements // // ////////////////////////////////////////////// always @(posedge i_clk) if ((gie)&&(wr_reg_ce)) begin // Cover the switch to interrupt cover((i_interrupt)&&(!alu_phase)&&(!bus_lock)); // Cover a "step" instruction cover(((alu_pc_valid)||(mem_pc_valid)) &&(step)&&(!alu_phase)&&(!bus_lock)); // Cover a break instruction cover((master_ce)&&(break_pending)&&(!break_en)); // Cover an illegal instruction cover((alu_illegal)&&(!clear_pipeline)); // Cover a division by zero cover(div_error); // Cover a bus error cover(bus_err); // Cover a TRAP instruction to the CC register cover(((wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc))); end ////////////////////////////////////////////// ////////////////////////////////////////////// // // always @(*) // if (break_pending) // `ASSERT((op_valid)&&(op_break)); ////////////////////////////////////////////// // // // Problem limiting assumptions // // ////////////////////////////////////////////// // // Careless assumptions might be located here always @(*) assume(fc_op_Aid[3:0] != `CPU_CC_REG); always @(*) assume(fc_op_Bid[3:0] != `CPU_CC_REG); always @(*) assume(!i_halt); `endif // FORMAL //}}} endmodule