OpenCores
URL https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk

Subversion Repositories dblclockfft

[/] [dblclockfft/] [trunk/] [sw/] [fftgen.cpp] - Rev 22

Rev

Go to most recent revision | Details | Compare with Previous | Blame

Filtering Options

Clear current filter

Rev Log message Author Age Path
22 Lot's of changes, mostly around getting this multiply to fit within a
particular FPGA. Specifically, we just added the capability of using
hardware multiplies to the command line options. Use them if you have
them, and it will simplify the operation of the FFT.
dgisselq 3413d 13h /dblclockfft/trunk/sw/fftgen.cpp
21 Modified the core generator so that the result compiles with Xilinx's Vivado
toolsuite without generating any syntax errors.
dgisselq 3414d 09h /dblclockfft/trunk/sw/fftgen.cpp
20 Adjusted rounding to use the floating point modes inherent in the double type.
Hence, (int)(x+0.5) has been replaced by (int)round(x).
dgisselq 3415d 23h /dblclockfft/trunk/sw/fftgen.cpp
19 Added the capability to accumulate bits internal to the FFT, only to drop
those extra bits just before the end. This helps to reduce truncation
error, and may even drop it by a factor of four (my own measurements).
dgisselq 3416d 18h /dblclockfft/trunk/sw/fftgen.cpp
16 Cleaned up the test bench build scripts, made sure license statements were
placed on all files, etc.
dgisselq 3418d 11h /dblclockfft/trunk/sw/fftgen.cpp
15 Added rounding into the routine to remove bias. All of the test benches have
been modified so that the FFT, with rounding, now passes. While the rounding
implementation applied does remove bias, it does not yet remove all bias.
Some work still remains.
dgisselq 3419d 09h /dblclockfft/trunk/sw/fftgen.cpp
14 Found several bugs in the previous version. The biggest were in the qtrstage.
Apparently, the qtrstage didn't work before, even though I thought it did.
Further, the FFT testbench has been adjusted to place proper values into
the fft_tb.dbl file it creates. (I've been testing it by reading this into
Octave, and visually inspecting the results--quantitative testing of the
fft_tb and ifft_tb are still lacking.) Now, however, if I cascade the
forward and reverse together, I seem to get something at least close to the
right answer. Close, of course, is relative. I think all that I still
struggle with is rounding and truncation errors, hence I'm checking in
my changes.

The FFT generator was also modified to allow arbitrary length paths
in the command line specified path prefix. This has not been tested.

A bug was also found in the butterfly, whereby for certain multiply delays
the butterfly would be unable to determine whether or not its results were
valid. Adding an extra bit to the FIFO address in these cases fixed the
problem. This change was encapsulated into the lgdelay() function, and
an additional bflydelay function. In my frustration, I modified the
fftstage function so that, when it is built, the parameters it is built
with are the default parameters. This should only affect testing, by
making any testing more realistic, but that may still remain to be seen.

Another change was made to the core generator, so that now when a core
is generated, the main file now contains a copy of the arguments that were
used when the core generator was invoked. This is good for posterity, in
case you ever need to ask yourself how I ended up here.
dgisselq 3420d 08h /dblclockfft/trunk/sw/fftgen.cpp
9 Now working on the test bench for the FFT. Currently, the FFT passes
all test bench "tests." However, the test bench does not yet accurately
report on the success of its work. This remains for future work. Lots
of bugs fixed while making this test bench code work.

(I should mention, while all test benches currently pass, that doesn't
mean that the code works ... yet. I just haven't found the bug that
breaks it.)
dgisselq 3426d 13h /dblclockfft/trunk/sw/fftgen.cpp
8 This completes the initial work on a test bench for the FFT stage. I
chose to test the odd 2048 stage only, but (hopefully) the testbench
will still apply to all other stages as well. At any rate, based upon
some trial runs, it looks like the FFT may be starting to work as well.

More testing is needed, for certain, but to do that I'm going to have
to figure out just what tests are needed, and how exactly to apply those
tests within the test bench construct.
dgisselq 3426d 20h /dblclockfft/trunk/sw/fftgen.cpp
6 Lots of work accomplished today. Test benches now exist and work for the:
butterfly, multiply, bitreversal, pairwise FFT stage (dblstage), and the
four-wise FFT stage (qtrstage). Work continues on the single (generic)
FFT stage, and (of course) the FFT isn't ready yet. A second commit will
follow this one shortly with the new files added (oops!--I should've added
them this time--my bad.)
dgisselq 3427d 07h /dblclockfft/trunk/sw/fftgen.cpp
5 The butterfly_tb is now written, and the butterfly succeeds at the test
bench!
dgisselq 3427d 14h /dblclockfft/trunk/sw/fftgen.cpp
2 Here's an attempt at a first subversion update. dgisselq 3427d 20h /dblclockfft/trunk/sw/fftgen.cpp

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.