A simple combinational addition module.
sum = addend + addend
Input format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Inputs:
a - addend 1
b - addend 2
Output format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Output:
c - result
NOTE: There is no error detection for an overflow. It is up to the designer
to ensure that an overflow cannot occur!!
Example usage:
qadd #(Q,N) my_adder(
.a(addend_a),
.b(addend_b),
.c(result)
);
For subtraction, set the sign bit for the negative number. (subtraction is
the addition of a negative, right?)
A simple combinational multiplication module.
Input format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Inputs:
i_multiplicand - multiplicand
i_multiplier - multiplier
Output format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Output:
o_result - result
ovr - overflow flag
NOTE: This module assumes a system that supports the synthesis of
combinational multipliers. If your device/synthesizer does not
support this for your particular application, then use the
"qmults.v" module.
NOTE: Notice that the output format is identical to the input format! To
properly use this module, you need to either ensure that you maximum
result never exceeds the format, or incorporate the overflow flag
into your design
Example usage:
qmult #(Q,N) my_multiplier(
.i_multiplicand(multiplicand),
.i_multiplier(multiplier),
.o_result(result),
.ovr(overflow_flag)
);
A multi-clock multiplication module that uses a left-shift and add algorithm.
result = multiplicand x multiplier
Input format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Inputs:
i_multiplicand - multiplicand
i_multiplier - multiplier
i_start - Start flag; set this bit high ("1") to start the
operation when the last operation is completed. This
bit is ignored until o_complete is asserted.
i_clk - input clock; internal workings occur on the rising edge
Output format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Output:
o_result_out - result
o_complete - computation complete flag; asserted ("1") when the
operation is completed
o_overflow - overflow flag; asserted ("1") to indicate that an
overflow has occurred.
NOTE: This module is "time deterministic ." - that is, it should always
take the same number of clock cycles to complete an operation,
regardless of the inputs (N+1 clocks)
NOTE: Notice that the output format is identical to the input format! To
properly use this module, you need to either ensure that you maximum
result never exceeds the format, or incorporate the overflow flag
into your design
Example usage:
qmults #(Q,N) my_multiplier(
.i_multiplicand(multiplicand),
.i_multiplier(multiplier),
.i_start(start),
.i_clk(clock),
.o_result(result),
.o_complete(done),
.o_overflow(overflow_flag)
);
The qmults.v module begins computation when the start conditions are met:
o_complete == 1'b1;
i_start == 1'b1;
A multi-clock division module that uses a right-shift and add algorithm.
quotient = dividend / divisor
Input format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Inputs:
i_dividend - dividend
i_divisor - divisor
i_start - Start flag; set this bit high ("1") to start the
operation when the last operation is completed. This
bit is ignored until o_complete is asserted.
i_clk - input clock; internal workings occur on the rising edge
Output format:
|1|<- N-Q-1 bits ->|<--- Q bits -->|
|S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF|
Output:
o_quotient_out - result
o_complete - computation complete flag; asserted ("1") when the
operation is completed
o_overflow - overflow flag; asserted ("1") to indicate that an
overflow has occurred.
NOTE: This module is "time deterministic ." - that is, it should always
take the same number of clock cycles to complete an operation,
regardless of the inputs (N+Q+1 clocks)
NOTE: Notice that the output format is identical to the input format! To
properly use this module, you need to either ensure that you maximum
result never exceeds the format, or incorporate the overflow flag
into your design
Example usage:
qdiv #(Q,N) my_divider(
.i_dividend(dividend),
.i_divisor(divisor),
.i_start(start),
.i_clk(clock),
.o_quotient_out(result),
.o_complete(done),
.o_overflow(overflow_flag)
);
The qdiv.v module begins computation when the start conditions are met:
o_complete == 1'b1;
i_start == 1'b1;
For some more info on how this module works, check out the video at the link below:
Binary Fixed-Point Division by Tom Burke